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Abstract

We consider an evolutionary model with mutations which
incorporates stochastic population growth.  We provide a complete
characterization of the effects of population growth on the evolution of
play.  In particular, we show that if the rate of population growth is at
least logarithmic, the stochastic process describing play converges:
only one equilibrium will be played from a certain point forward.  If in
addition the rate of mutation is taken to zero, the probability that the
equilibrium selected is the first equilibrium played approaches one.
Thus, population growth generates history dependence:  the
contingency of equilibrium selection on historical conditions.
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1.  Introduction

Kandori, Mailath, and Rob (1993) introduce their model of stochastic evolution by
describing two major difficulties of non-cooperative game theory. First, Nash
equilibrium requires more stringent rationality and knowledge assumptions than are
typically natural to assume, raising questions about why we should expect Nash
equilibria to be played.  Second, many games exhibit multiple equilibria.  In such cases,
unless a compelling justification of why players coordinate on a specific equilibrium
exists, the predictive content of the equilibrium concept is cast into doubt. The program
of equilibrium refinements has not overcome these difficulties. In most cases,
refinements do not generate unique predictions.  Moreover, as Samuelson (1993) notes,
different refinements yield different predictions, transforming the problem of multiple
equilibria into a problem of multiple refinements.

Recent work in evolutionary game theory has engendered hope of addressing these
issues.  Evolutionary models need not assume that players are particularly rational, and
are able to study whether boundedly rational players can learn to play a Nash
equilibrium as a group.  Moreover, multiplicity of equilibria has a natural interpretation
as a multiplicity of predictions:  uniqueness is not required to justify coordination,
which occurs as a consequence of the evolutionary process itself.

Using only weak rationality and knowledge assumptions, Kandori, Mailath, and
Rob (1993, henceforth KMR) show that populations of players can learn to play Nash
equilibria, and give unique predictions about the equilibrium which will be played.1  A
fixed population of players is repeatedly randomly matched to play a 2 x 2 symmetric
game.  A deterministic dynamic describes the movement of the population towards the
selection of strategies that have performed well in the past.  This dynamic is perturbed
by introducing small, independent probabilities of mutation by each player.  The
evolution of play is thus represented by a Markov chain on the state space of
distributions of strategy choices of the members of the population.  For any positive rate
of mutation, this Markov chain has a unique stationary distribution which is also the
ergodic distribution of the process:  the long run proportion of time spent in each state.
KMR consider the long run equilibria of the game, which they define to be the states that
receive positive weight in the stationary distribution when the rate of mutation is taken
to zero.  Their main result is that in coordination games, all long run equilibria entail
coordination on the risk dominant strategy.

1 Other seminal models in this stream of the literature include Foster and Young (1990) and Young
(1993).
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In this paper, we extend the KMR model by introducing stochastic population
growth.  While most work in evolutionary economics has focused on the behavior of a
fixed group of agents, it seems quite natural to consider the effects of alterations in the
membership of the population itself.  Such alterations play a central role in biological
evolutionary game theory.  The replicator dynamic (and, implicitly, the notion of
evolutionary stability) is driven entirely by population adjustment:  the payoffs of the
underlying game represent the reproductive fitnesses of the strategies, and the birth and
death rates of individuals programmed to play each strategy determine the course of
evolution.  Evolutionary economic models have focused on the effects of myopic
strategy adjustments in fixed populations.  However, in analogue with the biological
models, it is reasonable to allow economic evolution to be influenced by entry and exit,
which takes place in accordance with the benefits of membership in the population.

As an example, consider consumer technology choice, a fit candidate for an
evolutionary economic analysis.2  When a new technology becomes available,
consumers only slowly avail themselves of its potential; it may be a matter of years after
its introduction before the technology becomes established to its fullest degree.
Consequently, it is natural to model technology choice using a small initial population
which grows over time, and in particular to ask whether the behavior of the original
agents has a disproportionate influence on the ultimate course of events.

In the sequel, we provide a complete characterization of the effects of population
growth on the evolutionary process.  Under slow enough rates of population growth,
the equilibrium selection results of KMR are strengthened:  the limiting distribution of
the evolutionary process puts all weight on the risk dominant equilibrium, even when
the rate of mutation is positive.  For a small intermediate range of growth rates, this
equilibrium selection result is strengthened further:  with probability one, the
population settles upon the risk dominant equilibrium, playing it exclusively from a
certain time forward.  In contrast, under faster rates of population growth, the
evolutionary process fails to select the risk dominant equilibrium.  The population
eventually settles upon an equilibrium, and each pure strategy equilibrium is this limit
with positive probability.  More importantly, as the rate of mutation approaches zero,
the probability that the population coordinates in all periods on the equilibrium in

2 Models of consumer technology choice involve large populations of agents who must select among a
variety of options for satisfying a technological need.  Each option exhibits network externalities:
consumers prefer options that are used by more of their fellows.  In this setting, it is sensible to model
consumers as myopic decision makers who base their choices on the population shares using each
available option.  See Kandori and Rob (1993) for an evolutionary model of technology choice.  For
examples and discussion of network externalities, see Katz and Shapiro (1985, 1986).
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whose basin of attraction play began approaches one.  Hence, the long run behavior of
the evolutionary process depends entirely on its initial conditions.

Surprisingly, the critical rates of population growth at which the character of
evolution changes are logarithmic.  Logarithmic growth is extremely slow.  As this slow
rate of growth is a sufficient condition for history dependence to occur, we conclude
that in evolutionary situations involving population growth, dependence of equilibrium
selection on historical conditions should be expected.

KMR's model of evolution suggests that in the long run, initial conditions do not
matter.  In contrast, our model indicates that only initial conditions matter.  Thus, rather
than depending on underlying strategic considerations, the evolution of a convention
may often be a consequence of a precedent set by a small but fundamental advance
guard.  A convention need not be optimal, nor even secure against risk; it often simply
needs to be established first.

The intuition behind our results can be explained as follows.  In both KMR's model
and our model, deterministic dynamics divide a discrete analogue of mixed strategy
space into two basins of attraction, one for each pure strategy equilibrium.
Coordination on an equilibrium breaks down if enough mutations occur to cause the
population to jump between basins of attraction.  In KMR, since the number of players
is fixed, the probability of simultaneous mutations by a fraction of the population large
enough to break coordination, while quite small, is fixed.  Thus, such events will occur
an infinite number of times and generate the ergodic behavior which drives KMR's
results.  However, when the population is growing, the probability of a shock great
enough to disturb coordination decreases over time.  If this probability falls fast enough,
we are assured that from some point onward, no switches occur.  Logarithmic growth is
both necessary and sufficient for this conclusion.  If in addition the rate of mutation is
taken to zero, the probability that simultaneous mutations will disrupt coordination in
any finite time span vanishes.  Consequently, we are able to show that logarithmic
growth together with arbitrarily small mutation rates yield complete dependence on
initial conditions.

In an effort to keep the model as simple as possible we study 2 x 2 symmetric
coordination games; however, our results are actually quite general.  In particular, our
main result can be extended to any strict Nash equilibrium of any n x n symmetric
game.

KMR has been criticized on the grounds that its predictions, which are based on
asymptotic properties of the evolutionary process, require inordinately long times to
gain economic relevance.  When the underlying contest is a coordination game, the
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waiting time to jump between equilibria is roughly ε–N, where N is the population size
and ε the rate of mutation.  Since evolutionary models are most naturally applied to
large populations, and since in the analysis the rate of mutation is taken to zero, the
predictive power of the limiting stationary distribution is called into question.3  While
our results may appear to be a restatement of this critique, they differ from it in two
fundamental ways.  While the waiting time critique strains the interpretation of the
equilibrium selection results of KMR, the results themselves remain correct.  In our
model, the equilibrium selection results fail to hold.  On the other hand, we show that
KMR's equilibrium selection results still obtain, and are in fact strengthened, under
sublogarithmic growth.  It is therefore clear that the unboundedness of the population
size alone does not drive convergence in our model:  the rate of population growth itself
plays a crucial role.

The formal results of stochastic evolutionary models describe a population's
behavior in the infinite time horizon.  In economic applications of these models, the
relevant time span is bounded; the limiting results should be interpreted as an
approximate characterization of behavior after some finite span.  In our growing
population model, both the time span and the population size are unbounded; again,
the results should be interpreted as an approximate characterization of a bounded
model.  We investigate the implications of our results in bounded settings in Section 4.2.
Fixing a positive rate of mutation, we show that for any finite time span, the population
size required to virtually guarantee history dependence over that span is logarithmic in
the length of the span.  Unless the relevant time horizon is exceptionally long, this
requirement on the population size is quite weak.  While this finding is worthy of
mention on its own, it also implies a stringent necessary condition for KMR's fixed
population equilibrium selection results to be applicable over finite periods of time:
unless the time span of interest is more than exponentially greater than the size of
population, history dependence should be expected.

Binmore, Samuelson, and Vaughan (1995) study the effects of varying the order in
which limits are taken in stochastic evolutionary models.  They find that if the limit as
time tends to infinity is taken before the population limit, equilibrium selection results
like those of KMR are generated, while if the population limit is taken first, then the

3 KMR, noting these difficulties in interpretation, suggest that their model is best applied to small
populations.  Nevertheless, an evolutionary economic analysis seems most relevant when the number of
players is large, as this appears necessary to justify the implicit anonymity assumption and the myopic
decision criteria used by the players.  See Ellison (1993, 1995), Binmore, Samuelson, and Vaughan (1995),
and Binmore and Samuelson (1997) for further discussion of waiting times in stochastic evolutionary
models.
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evolution of play closely approximates a deterministic dynamic (in their model, the
replicator dynamic) for arbitrarily long finite periods of time.  The authors conclude that
because of the waiting times necessary for the equilibrium selection results to become
meaningful, modelers should expect that in most instances, the deterministic dynamic
yields the relevant prediction.  The model presented here can be viewed as an attempt
to refine the analysis of Binmore, Samuelson, and Vaughan (1995) by taking the time
and population limits simultaneously.  Our results reinforce the assessment of these
authors that in most evolutionary settings, deterministic dynamics provide more
realistic predictions than analyses of stochastic stability.

In independently conceived work, Robles (1995) obtains similar results to those
presented here by allowing declining rates of mutation.  In the original KMR model,
stationary distributions are determined for each fixed rate of mutation, and the
equilibrium concept used concerns the limit of the stationary distributions as the rate of
mutation tends to zero.  In contrast, Robles (1995) allows the rate of mutation to
decrease as time tends to infinity.  Necessary and sufficient conditions are given for the
existence of a limiting distribution of the evolutionary process which is independent of
the initial state.  The analysis is similar to our own, as, roughly speaking, both sets of
results are also driven by decreasing the ratio of probability of mutation to population
size.  In Section 4.1, we show how our results can be extended to the case of declining
mutation rates, and provide a tighter characterization of the limit behavior in this
setting than does Robles (1995)4,5

We view our model as an effort towards generating more realistic predictions of the
behavior of large populations.  KMR and much of the literature which it has spawned
have focused on evolutionary models yielding unique predictions.  While uniqueness of

4 For complementary work focusing on mutation in evolutionary models, see Bergin and Lipman (1996)
and Blume (1994).
5 Ellison (1993) models economic evolution under the assumption that players are only matched against
opponents who are nearby with respect to some neighborhood structure.  He shows that in coordination
games, the risk dominant equilibria remain the long run equilibria, but that the waiting times to reach
these equilibria are dramatically smaller than in the KMR model.  If one adds population growth but fixes
the neighborhood size, it seems likely that the risk dominant equilibrium would continue to be selected,
as the critical number of mutations needed to disturb coordination on the risk dominated equilibrium
stays fixed.  The predictions of KMR would thus appear to be more robust to population growth in
specific cases in which a local interaction structure exists.  For related work on local interaction models,
see Blume (1993, 1995) and Ely (1995).

In the stochastic evolutionary model of Young (1993), as in that of KMR, the risk dominant equilibrium
is selected in 2 x 2 coordination games.  However, the two models are in other respects quite different.  In
Young's (1993) model, a representative from each of n populations is chosen in each period to play an n
player normal form game.  These representatives select best responses to incomplete memories of plays
by past representatives.  The sizes of the populations are irrelevant in this model; hence, population
growth would have no effect.
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equilibrium is obviously desirable in the setting of one-shot simultaneous move games,
we feel that such a conclusion is not always sensible when we consider actual
evolutionary settings.  It is natural to expect that the evolution of the behavior of large
groups of players will often depend on historical conditions.  This necessarily implies
non-unique predictions, since different initial conditions can generate different
outcomes.  Therefore, allowing for the possibility of multiple equilibria, although less
satisfactory from the perspective of "traditional" economic analysis, can often provide a
more realistic analysis of the behavior of large populations.

2.  The Model

Players are repeatedly matched to play the symmetric 2 x 2 game in Figure 1.

Figure 1

a, a b, c

c, b d, d

s1

s1

s2

s2

We identify 2 x 2 symmetric games with vectors G = (a, b, c, d) ∈      R4 .  We restrict our
attention to coordination games; these are games satisfying a > c and d > b.  Let x* be the
proportion of players selecting strategy s1 in the symmetric mixed strategy equilibrium
of G:

x* = 
    

d − b
(a − c) + (d − b)

.

We assume without loss of generality that x* ≥   
1
2 , so that strategy     s2  is risk dominant.

Following KMR, we first consider a fixed population of n players who are repeatedly
randomly matched to play the game G.  The distribution of strategies in the population
is an element of   Zn  = {0, 1, 2, ... , n}, representing the number of players who are

currently using strategy     s1.  States 0 and n in Zn will be called the unanimous states;
these are the states towards which the evolutionary process gravitates.

Since players are never randomly matched against themselves, expected payoffs are
given by
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π 1(z,n) = (z − 1)

(n − 1)
a + (n − z)

(n − 1)
b for z ∈  {1, 2, ... , n},

    
π 2(z,n) = z

(n − 1)
c + (n − z − 1)

(n − 1)
d for z ∈  {0, 1, ... , n – 1}.

We assume clever myopic adjustment:  players evaluate their strategies by comparing
their current expected payoffs to their expected payoffs if they were to switch strategies,
given that the remaining players do not switch strategies.  That is, players selecting s1

want to switch at state z if and only if π1(z, n) < π2(z – 1, n), while s2 players want to
switch precisely when π2(z, n) < π1(z + 1, n).6  We consider two dynamic adjustment
processes based upon these comparisons.  In both cases, the dynamics report the net
number of switches, with positive numbers representing an increase in the number of
players choosing s1.

Under the best response dynamics, players constantly monitor their strategies, always
updating to play a best response whenever they are not doing so.  Formally, the best
response dynamics are defined as follows:

DBR(z, n) = 
    

−z if z ∈[0,nx*],
n − z if z ∈(nx*,n].





The best response dynamics are the fastest dynamics consistent with clever myopic
adjustment.

As an alternative, it may be desirable in an evolutionary economic model to assume
that players do not constantly monitor their strategies.  Rather, it seems more consistent
with myopia to assume that players only occasionally consider updating their choice of
action.  This observation motivates the Bernoulli dynamics.7  Under these dynamics, in
each period, each player independently with probability θ > 0 receives a learning draw:
the opportunity to reevaluate his strategy choice.  If he is currently playing the myopic
best response, he stands pat; otherwise, he switches.  We formally define the Bernoulli
dynamics as follows.  Let (Ω, F  , P) be a probability space.  Fixing θ, we define a
collection of i. i. d. random variables Ut,i, t ∈  N0 = {0, 1, 2, ...}, i ∈  N, with P(Ut,i = 1) = θ

6 In contrast, KMR assume simple myopic adjustment:  players evaluate their strategies by comparing
their current expected payoffs to those of an opponent currently playing the other strategy.  For small
population sizes, simple myopic adjustment can lead to counterintuitive results:  for example,
coordination on strictly dominated strategies.  Nevertheless, versions of the results in this paper can still
be proved under the assumption of simple myopic adjustment.  See Sandholm (1996) for a discussion of
the differences between the payoff evaluation methods.
7 Such dynamics were first introduced by Samuelson (1994).
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and P(Ut,i = 0) = 1 – θ.  The Bernoulli dynamics, denoted Dθ, are given by:

Dθ(z, n) = 
    
−1

{π 1 (z ,n)<π 2 (z−1,n)}
(z,n) Ut ,i

i=1

z

∑ + 1
{π 2 (z ,n)<π 1 (z+1,n)}

(z,n) Ut , j
j= z+1

n

∑ ,

As usual, the ones represent indicator functions.
Under clever myopic adjustment, for generic payoffs there is a single state at which

players using either strategy want to switch.  Our best response dynamics implicitly
assume that only players of one of the two strategies switch at this state.  This greatly
simplifies the analysis of the resulting evolutionary process.  The Bernoulli dynamics do
not incorporate this simplifying assumption.

Mutation is modeled using a collection of i. i. d. random variables Xt,i, t ∈  N0, i ∈  N,
with P(Xt,i = 1) = ε and P(Xt,i = 0) = 1 – ε. For each fixed t, these random variables are
also assumed to be independent of Us,i for all s ≤ t and all i.  The change in the number
of s1 players during period t due to mutations is given by

    
Mt(z,n) = − Xt ,i +

i=1

z

∑ Xt , j
j= z+1

n

∑ .

The evolution of play is described by a nonhomogenous Markov chain     (Nt , ζt ){ }t=0

∞

on N ×  N 0.  At each time t ≥ 0,   Nt  ≥ 2 denotes the population size, while ζt ≤ N t

represents the number of players selecting strategy s1.  The initial state, (N0, ζ0), with ζ0

≤ N0, is given; the evolution of the states will be explained below.  We assume that for

all i and t, Ut,i and Xt,i are independent of Ns and ζs for all s ≤ t.  Let       F t{ }t=0

∞  be the

filtration generated by     (Nt , ζt ){ }t=0

∞
:  that is, Ft = σ((Ns, ζs):  s ≤ t).  Observe that each F t is

countably generated, and that F 0 = {Ø, Ω}.

Population growth occurs via an entry ("birth") process     Bt{ }t=0

∞ .  The number of

births which occur during each period is Markovian:  the distribution of births can
depend on the current state, but on nothing else.  That is, Bt: Ω  →     N0  satisfies the

following Markov condition:

    P(Bt ∈A (Ns ,ζs ), s ≤ t) = P(Bt ∈A (Nt ,ζt )) for all A ⊆      N0 .

The adjustments in the population size are thus stochastic functions of the current
period's state.  One of many possible interpretations is that the change in population



– 11 –

size is a noisy function of the average payoffs received by players in the current period.
Of course, other interpretations are possible depending on the exact specification of the
process.

We assume that entrants, like players receiving the learning draw, play a myopic
best response to the current behavior of the population.  Formally, the entrants'
behavior, stated in terms of the number of entrants who choose strategy s1, is given by

e(Bt, z, n) = 
    

0 if z ≤ nx*,
Bt otherwise.





As presented thus far, our model does not admit the possibility of players exiting the
population ("dying"), nor is it flexible concerning players' behavior upon entry.
However, as we discuss in Section 4.3, the model can be adapted to admit these
possibilities.  In particular, all of the results stated under the best response dynamics are
unaffected if both entry and exit are permitted.

The law of motion of     (Nt , ζt ){ }t=0

∞
 is generated by combining mutation and entry with

the base dynamic Dt:

Nt+1 = Nt + Bt,
ζt+1 = ζt + Mt(ζt, Nt) + Dt(ζt + Mt(ζt, Nt), Nt)

+ e(Bt, (ζt + Mt(ζt, Nt) + Dt(ζt + Mt(ζt, Nt), Nt)), Nt).

It is clear that     (Nt , ζt ){ }t=0

∞
 is a Markov chain on N × N0.

The critical assumption needed for our results are bounds on the asymptotic growth
rate of the population.  We now define notation characterizing the asymptotic behavior
of deterministic functions and random variables.  We say that a function f: N0 → N is
asymptotically at least k ln t, denoted f(t)   ≥a  k ln t, if there exists a T > 0 such that for all t ≥
T, f(t) ≥ k ln t.  The condition f(t)   ≤a  k ln t is defined similarly.  Our growth conditions for
random variables require that they be uniformly bounded by deterministic functions.

For example, we say that a sequence of random variables     Xt{ }t=0

∞
uniformly approaches

infinity, denoted Xt →u ∞, if there exists a function f such that f(t) → ∞ as t → ∞ and Xt ≥
f(t) almost surely for all t.  We say that     Xt{ }t=0

∞  is asymptotically uniformly greater than k ln

t, denoted Xt   >u  k ln t, if there exist a function f and a positive constant α such that f(t)

  ≥a  (k + α ) ln t and Xt ≥ f(t) almost surely for all t.  Similarly Xt   <u  k ln t if there exist a
function f and a positive constant α such that f(t)   ≤a  (k – α ) ln t and Xt ≤ f(t) almost
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surely for all t.  We last define

Ωu(ln t) = 
    

Xt{ }t=0

∞ ∃k > 0 such that Xt >u k ln t{ } ,

οu(ln t) = 
    

Xt{ }t=0

∞
Xt <u k ln t ∀ k > 0{ }.

Intuitively, Ωu(ln t) is the set of sequences of random variables whose asymptotic
growth rates are at least logarithmic, while οu(ln t) is the set of sequences of random
variables whose asymptotic growth rates are less than logarithmic.

It will be convenient to state our results by considering the movement of the
population between the basins of attraction of the unanimous states.  We track this

movement by defining a new process,     zt{ }t=0

∞ , which reports which basin of attraction

the population inhabits at each time t.  Most of our results concern evolution under the

best response dynamics, DBR.  Under these dynamics, we define the process     zt{ }t=0

∞  as

follows:

zt(ω) =
    

1 if ζt(ω ) > Nt(ω )x*,
2 if ζt(ω ) ≤ Nt(ω )x*.





Observe that under the best response dynamics, after period zero the population must
be at a unanimous state; hence, zt and Nt are together enough to determine ζt.

Under the Bernoulli dynamics Dθ, defining the process     zt{ }t=0

∞  is a bit more

complicated, because for generic payoffs there is a single state from which it is possible
to arrive at either unanimous state without a mutation.  At this exceptional state, we let
zt take the value zero.  This extra possibility will not prove relevant to our analysis.
Still, we define

zt(ω) = 

    

0 if π 1(ζt , Nt ) < π 2(ζt – 1, Nt ) and π 2(ζt , Nt ) < π 1(ζt + 1, Nt ),
1 if π 1(ζt , Nt ) ≥ π 2(ζt – 1, Nt ) and π 2(ζt , Nt ) < π 1(ζt + 1, Nt ),
2 if π 1(ζt , Nt ) < π 2(ζt – 1, Nt ) and π 2(ζt , Nt ) ≥ π 1(ζt + 1, Nt ).









Our analysis focuses on the effect of population growth on the behavior of     zt{ }t=0

∞ .

We find that even logarithmic rates of population growth are fast enough to make this
process converge:  from some point forward, the population coordinates on a single
equilibrium.  If in addition the rate of mutation small enough, the process is constant
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and equal to its initial value z0 with arbitrarily high probability.  In other words, long
run behavior is completely determined by initial conditions.

3.  Results

We begin by reviewing the results of KMR in the current context.  To do so, we
simply need assume that the population process is constant:  Nt ≡  N  for all t.  We
assume that x* >   

1
2 , so that     s2  is the unique risk dominant strategy, and consider

evolution under the best response dynamics.

Theorem 1 (Kandori, Mailath, and Rob 1993):  Assume that Nt ≡ N for all t and that x* ≥

    
1
2

N +1
N( ) >   

1
2 .  Then under the best response dynamics DBR, for any ε < 1 – x* there exists a

probability vector µε =   (µε
1 ,µε

2 ) such that

(a) (Wandering) P(
    
lim
t→∞

zt  exists) = 0.

(b) (Convergence in distribution)
    
lim
t→∞

P(zt = i) = µε
i  for i = 1, 2.

(Ergodicity)
    
lim
T→∞

1
T 1{zt = i}t=0

T −1∑ = µε
i  almost surely for i = 1, 2.

Moreover,   (µε
1 ,µε

2 ) → (0, 1) as ε → 0.

KMR open their analysis by studying the limit behavior of their constant population
size model for a fixed positive rate of mutation.  Under the best response dynamics,

    zt{ }t=1

∞  is a stationary Markov chain with strictly positive transition probabilities.  Hence,

a unique stationary distribution exists, and by standard results in Markov chain theory,
it is the limiting distribution of the process as well as the ergodic distribution of the
process:  with probability one, the time averaged behavior of the process approaches
this distribution.  KMR then show that as the rate of mutation approaches zero, all of
the mass in the stationary distribution is placed on the state corresponding to the risk
dominant equilibrium.  Hence, when mutations are rare, in the long run we should
expect to see the population coordinating on the risk dominant equilibrium.

We have noted in part (a) that the process     zt{ }t=0

∞  wanders:  P(
    
lim
t→∞

zt  exists) = 0.  Recall

that the process     zt{ }t=0

∞  records the movements of the population between the two

basins of attraction.  If the limit of this process fails to exist for a particular realization

    zt(ω ){ }t=0

∞ , then in this realization the population jumps between the two basins of

attraction forever.  Part (a) states that with probability one, this limit does not exist.
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Consequently, the equilibrium selection results of KMR described above are stochastic
in nature:  even when the risk dominant equilibrium is reached, it will almost surely be
abandoned at some future date.

Adding population growth to the KMR model produces two effects which influence
the course of evolution.  The first effect is absolute:  population growth makes jumps
between the equilibria become less likely over time.  Thus, for fast enough rates of

growth, these jumps might cease, preventing the process     zt{ }t=0

∞  from wandering

between states forever.  The second effect is relative: as the population size grows
arbitrarily large, the difficulty in leaving the risk dominant equilibrium via mutations
becomes arbitrarily greater than the difficulty in leaving the risk dominated
equilibrium.  As we shall see, the latter effect manifests itself whenever population
growth is unbounded, while the former effect requires the more stringent condition of
logarithmic growth.

Of course, population growth renders the evolutionary process nonstationary, so a
stationary distribution cannot exist for positive rates of mutation.  Nevertheless, we can
still completely characterize the long run behavior of the process.  In order to state our
equilibrium selection result under slow population growth, we need conditions
concerning the relative sizes of the probabilities of leaving each equilibrium.  Define

Rt = 
    

P(zt+1 = 1zt = 2)
P(zt+1 = 1zt = 2) + P(zt+1 = 2 zt = 1)

.

Our sufficient conditions for equilibrium selection are

(J1)
    
lim
t→∞

Rt  = 0;

(J2)
    

Rt − Rt+1
t=0

∞

∑  < ∞.

Condition (J1) states that jumps from the risk dominant equilibrium become arbitrarily
more difficult than jumps from the risk dominated equilibrium.  Condition (J2) states
that the sequence of jump probability ratios is of bounded variation.  These conditions

hold if, for example, the population process     Nt{ }t=0

∞  is deterministic, increasing, and

unbounded.8

8 We prove this claim after the proof of Theorem 2(i).  When the population process is stochastic,
conditions (J1) and (J2) are difficult to check because the jump probabilities depend on the population
size, which in turn can depend in a complicated way on the history of the process.  Intuitively, these
conditions will hold if the population does not tend to be larger at the risk dominated equilibrium than at
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We also define three functions which prove critical to our characterization:

ρ(ε, a) =     
ε
a( )a 1−ε

1− a( )1− a
,

l(ε, a) = –(ln ρ(ε, a))–1,
u(ε, a) = –(ln ρ(ε, 1 – a))–1.

We now state our first result, which characterizes evolution under the best response
dynamics.

Theorem 2:  Suppose x* >   
1
2  and ε ∈ (0, 1 – x*), and set l = l(ε, x*) and u = u(ε, x*).  Then

under the best response dynamics DBR,

(i)  If Nt   →u ∞ and Nt   <u  l ln t, then

(a) (Wandering) P(
    
lim
t→∞

zt  exists) = 0.

(b) (Selection) Under (J1) and (J2), 
    
lim
t→∞

P(zt = 2) = 1.

(ii)  If   Nt   >u  l ln t and Nt   <u  u ln t, then

(a) (Convergence) P(
    
lim
t→∞

zt  exists) = 1.

(b) (Selection) P(
    
lim
t→∞

zt  = 2) = 1.

(iii)  If Nt   >u  u ln t, then

(a) (Convergence) P(
    
lim
t→∞

zt  exists) = 1.

(b) (Non-selection) P(
    
lim
t→∞

zt  = i) > 0 for i = 1, 2.

When the population grows without bound but sublogarithmically (or slow enough
and logarithmically), only the relative effect is relevant.  Thus, in case (i), we see that the
population wanders forever.  Moreover, under conditions (J1) and (J2), the limiting
distribution places all weight on the risk dominant strategy.9  Hence, the equilibrium
selection results of KMR are strengthened by very slow population growth.

For a small range of logarithmic growth rates, the absolute effect of population

the risk dominant equilibrium.
9 That the population can wander between states forever and yet in the limit place all probability mass
on the risk dominant strategy may appear inconsistent.  To see that these claims are compatible, consider
an infinite sequence of coins such that the probability that the result of toss t is tails slowly approaches
zero (in particular, at a rate no faster than (1/t)).  Clearly, the probability that the tth toss comes up heads
approaches one.  Nevertheless, the second Borel-Cantelli Lemma implies that almost every realization of
the sequence of tosses contains an infinite number of both heads and tails.
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growth becomes relevant, but only affects the risk dominant equilibrium.  That is, it
becomes possible for the population to become stuck at the risk dominant equilibrium,
but not at the risk dominated equilibrium.  Consequently, in case (ii), the population
must converge to the risk dominant equilibrium with probability one.  For this limited
range of growth rates, equilibrium selection occurs in an especially stark fashion.

We emphasize that cases (i) and (ii) of Theorem 2 do not simply broaden the
conditions under which the equilibrium selection results of KMR obtain.  Rather, slow
population growth enhances the quality of the mode of selection.  In KMR, when the rate
of mutation vanishes, all of the limiting probability mass is placed on the risk dominant
equilibrium; since the population wanders, equilibrium selection is stochastic.  In case
(i) above, the same conclusion is reached, but under positive rates of mutation.
Moreover, in case (ii), the evolutionary process converges to the risk dominant
equilibrium: for this narrow band of growth rates, equilibrium selection is deterministic.

For superlogarithmic growth rates (and fast enough logarithmic growth rates), the
absolute effect of population growth predominates.  In case (iii), the growth rate is
sufficient to make becoming stuck at either equilibrium possible.  Indeed, convergence
occurs almost surely, and convergence to either equilibrium is possible.  Thus, the
equilibrium selection results of KMR are disrupted.

We observe once again that logarithmic growth rates are extremely slow.  If
population growth occurs, it is natural to expect it to occur at a superlogarithmic rate.
Therefore, we believe that case (iii) is the best characterization of behavior under
population growth.

We briefly sketch the idea behind the proof of Theorem 2; the proof itself can be
found in Section 6.  Fix a mixed strategy equilibrium x* >   

1
2  and a mutation rate ε < 1 –

x*, and set ρ = ρ(ε, x*) and l = l(ε, x*) = –(ln ρ(ε, x*))–1.  Suppose that at the beginning of
period t, all players are playing the risk dominant strategy, s2.  Since mutations by each
player are independent events with probability ε < x*, the law of large deviations
(Lemma 1(ii)) tells us that as the population size grows large, the probability that
enough deviations occur during period t to cause the population to jump out of the
basin of attraction of the risk dominant equilibrium is exponential in the population
size.  A calculation shows that the base of this exponent is ρ.  Thus, P(zt+1 = 1 zt = 2) is
asymptotically equal to   ρ

Nt .  A conditional version of the Borel-Cantelli Lemmas
(Lemma 2(ii)) can be used to show that such jumps can occur infinitely often if and only
if these conditional probabilities are summable.  If we let Nt = l ln t , then   ρ

Nt  =

    ρ
−(ln ρ )−1 (ln t)  =     ρ

−(ln ρ )−1 (ln ρ )(logρ t)  =     t
−1.  Since the sequence     t

a{ }t=0

∞
 is summable if and only if a
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< –1, Nt = l ln t is precisely the critical growth rate at which jumps from the risk
dominant equilibrium cease to occur infinitely often.  Similar reasoning can used to
assess the likelihood of jumps from the risk dominated equilibrium; we simply need to
replace ρ(ε, x*) with ρ(ε, 1 – x*) and l(ε, x*) with u(ε, x*).  Together, these arguments form
the basis for the characterization.

Figure 2 illustrates Theorem 2, sketching the regions corresponding to its three cases.
For a fixed value of x*, it classifies the various combinations of growth and mutation
rates.  For each fixed x*, the inverses of l(·, x*) and u(·, x*) are well defined.  The figure
takes into account this observation, as well as the following easily verified facts:  for all ε
∈  (0, 1 – x*), l(·, x*) and u(·, x*) are increasing, and l(ε, x*) < u(ε , x*); 

    
lim
ε ↓0

l(ε ,x*) =

    
lim
ε ↓0

u(ε ,x*) = 0; 
    

lim
ε ↑(1– x*)

l(ε ,x*) = [(2x* – 1) ln(x*/1 – x*)]–1; and 
    

lim
ε ↑(1– x*)

u(ε ,x*)  = ∞.

< ln t > ln t
k = ∞k = 0

1 – x*

0
rate of growth

mutation
rate ε

of Nt

(i) (ii) (iii)

= k ln t

l–1(k) u–1(k)

Figure 2

Following game theoretic tradition, we proceed by considering the effect on our
model of taking the rate of mutation to zero.  As is clear from Figure 2, lowering the
mutation rate to zero pares the three cases from our first result down to two.  In the
limit, all that matters is whether the rate of population growth is logarithmic.  If the
growth rate is sublogarithmic, the equilibrium selection results of KMR are retained and
even strengthened, as this immediate corollary to Theorem 2(i) shows.

Corollary 1:  Suppose that Nt ∈ ou(ln t).  Then under the best response dynamics DBR, for any

ε > 0, P(
    
lim
t→∞

zt  exists) = 0.  If in addition conditions (J1) and (J2) hold, 
    
lim
t→∞

P(zt = 2) = 1.

On the other hand, we know from Theorem 2 that logarithmic and faster growth
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rates can cause the population to settle on a single equilibrium.  When the rate of
mutation is taken zero, we can say much more:  as the mutation rate vanishes, so too
does the probability of leaving the basin of attraction in which play began.  This is our
main result.

Theorem 3 (History Dependence):  Suppose that Nt ∈  Ωu(ln t).  Then under the best response

dynamics DBR, 
    
lim
ε →0

P(zt = z0 for all t) = 1.

All of the results thus far have been stated under the best response dynamics DBR.
While analytically quite convenient, these dynamics possess two undesirable properties.
First, they are extremely fast:  all players react instantly to changes in the behavior of
their fellows.  Second, they are deterministic:  with probability one, DBR moves the
population away from the boundary of the basin of attraction; there is zero probability
of the population failing to adjust at all.10

In our final result, we show that the history dependence result persists under the
Bernoulli dynamics Dθ.  These dynamics share neither of the undesirable properties
mentioned above:  they are quite slow when θ is very small, and always admit the
possibility that the population does not adjust at all.  Nevertheless, history dependence
perseveres; hence, it is not simply an artifact of the best response dynamics, but a more
general consequence of population growth.

To prove this result, we need to strengthen the population growth condition by
assuming a particular logarithmic growth rate.  Nevertheless, this distinction does not
effect the interpretation of the result.  For example, growth rates satisfying this stronger
condition are still less than ta for any a > 0, or even (ln t)b for any b > 1, both of which
exhibit extremely slow growth.

We now present our final result.

Theorem 4:  Fix the Bernoulli dynamics Dθ for some θ > 0, and suppose that z0 ≠ 0.  If Nt   >u  k

ln t for some sufficiently large k, then 
    
lim
ε →0

P(zt = z0 for all t) = 1.

10 While this latter point may seem inconsequential, the distinction between probability zero events and
events with very small but positive probabilities acquires paramount importance when there are an
infinite number of opportunities for these events to occur.



– 19 –

4.  Extensions

4.1  Declining Mutation Rates

We have shown that allowing population growth can prevent evolutionary models
from exhibiting ergodic behavior.  Intuitively, this is a consequence of the decreasing
probability of jumps between the two equilibria; the results depend on the rates of
decrease.  Fixing the population size but allowing the rate of mutation to decline over
time has a similar effect on the probability of jumps; consequently, one would expect to
see similar results.  By asymptotically equating the probability of jumps in the two
models, we are able to show an equivalence between them.  In particular, we now show
how Theorem 2 can be adapted to a model with declining mutation rates, and provide a
tighter characterization of this model than that of Robles (1995).

For simplicity, we consider evolution under the best response dynamics.  In a model
with population growth, for a given rate of mutation ε, mixed strategy equilibrium x* >

  
1
2 , and population size Nt, we have seen that the probability of a jump from the risk

dominant equilibrium is asymptotically equal to     ρ(ε ,x*)Nt  as Nt approaches infinity.
Alternatively, consider an evolutionary model in which the population size is fixed at
some M (with x* ≥     

1
2

M +1
M( )), but in which the rate of mutation falls over time and is equal

to   δ t  at time t.  In such a model, the probability of a jump from the risk dominant

equilibrium is equal to     ai (δ t )
[Mx*]+ i

i=1

M −[Mx*]∑ , where [·] denotes the greatest integer

function and the ai are positive constants.  This expression is asymptotically equal to

    a1(δ t )
[Mx*+1] as   δ t  approaches zero.  If we fix ε and M, equate     ρ(ε ,x*)Nt  and     a1δ t

[Mx*+1], and

solve for δt in terms of Nt, we see that as Nt grows large, a population size of Nt

generates the same probability of jumping from the risk dominant equilibrium as a
mutation rate of     δ t(Nt )  ∝     ρ(ε ,x*)(Nt /[Mx*+1]) .  Recalling that the critical population

growth rate for jumps from the risk dominant equilibrium is Nt = l ln t = –(ln ρ(ε, x*))–1

ln t, we conclude that the critical declining mutation rate for such jumps is11 δt(–(ln ρ(ε,
x*))–1 ln t) ∝      t−1/[Mx*+1].

The preceding argument is the basis for our characterization of limiting behavior
under declining mutation rates.  To state our characterization, we first define two
functions which serve the same role as did the functions l(·, ·) and u (·, ·) in the
characterization of limiting behavior under population growth.

11 The critical declining mutation rate can also be determined by computing the Borel-Cantelli
summability condition directly.
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L(M, x*) = 
    

−1
[Mx*] + 1

,

U(M, x*) = 
    

−1
M − [Mx*]

.

We also define two standard pieces of asymptotic notation.

Ω(  ta ) = 
      

f :N0 → N ∃k,T such that f (t) ≥ kta ∀t ≥ T{ }.

O(  ta ) = 
      

f :N0 → N ∃k,T such that f (t) ≤ kta ∀t ≥ T{ },

These two notations mean "asymptotically at least ta" and "asymptotically at most ta",
respectively.

Table I presents our characterization, stated without proof, of limiting behavior
under declining mutation rates.  The table makes manifest the equivalence of the
population growth and declining mutation rate models.12

There are three main differences between our characterization of evolution under
declining mutation rates and that of Robles (1995).  Robles (1995) does not consider the
behavior of the sample paths of the evolutionary process.  Consequently, he establishes
just two classes of asymptotic behavior rather than three.  Additionally, in the first two
cases, in which a limiting distribution exists, Robles (1995) does not calculate this
distribution; hence, he does not observe the strenghtened equilibrium selection results
which occur in these cases.

Behavior Population Growth Declining Mutation Rates

Wandering &
Selection

Nt   →u ∞ ,
Nt   <u  l ln t.

    δ t → 0,

    δ t ∈Ω(tL ).

Convergence &
Selection

Nt   >u  l ln t,
Nt   <u  u ln t.

    δ t ∈O(tL−c ) for some c > 0,

    δ t ∈Ω(tU ).

Convergence &
Non-selection

Nt   >u  u ln t.     δ t ∈O(tU −c ) for some c > 0.

Table I:  Asymptotic Behavior under Population Growth and Declining Mutation Rates

12 We should point out that it is also mathematically possible to extend Theorem 3 to the case of
declining mutation rates.  However, the interpretation of this extension is quite strained.
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4.2  Bounded Populations and Finite Time Spans

As we discussed in the introduction, the results of the literature on stochastic
evolution are highly dependent upon the order in which the time and population limits
are taken.  Fix a rate of mutation ε.  If as in KMR we hold fixed the population size, the
risk dominant equilibrium eventually will have been played in a predominant
proportion of past periods.  On the other hand, for any fixed time span, there is a
population size large enough to virtually guarantee that the population always will play
its initial equilibrium selection.  Our limiting results, while suggestive, only partially
arbitrate between these two equilibrium predictions.  Consider, for example, a modeler
who intends to use a stochastic evolutionary model to study some subject of economic
interest.  The relevant time span is suggested by the object of study, as is a bound on the
size of the population; the small but positive rate of mutation is fixed.  When should the
modeler expect history dependence?

Once the time span of interest is fixed, by choosing the rate of mutation small
enough, we can be virtually assured that no change from the initial state will occur.
Therefore, to state an interesting history dependence result, we must fix the mutation
rate in advance, and then present a lower bound on the population size in terms of the
time span T such that history dependence will occur if the population size exceeds this
bound.  The bound must hold for arbitrarily long time spans given the mutation rate we
have chosen.

Suppose first that the modeler believes the population to be growing.  In this case,
we can apply Theorem 3 to address the question posed above directly.13  Fix a positive

constant c.  By Theorem 3, for any population process     Nt{ }t=0

∞  with Nt ≥ c ln t and any α

> 0, there exists an ε  such that P(zt = z0 for all t) > 1 – α whenever the mutation rate is
less than ε .  Hence, even under these positive rates of mutation, history dependence
occurs over the infinite horizon with high probability.  The modeler is interested only in
behavior through some finite time T.  Happily, it follows a fortiori from the previous
claim that for any T, P(zt = z0 for all t ≤ T) > 1 – α  under mutation rates less than ε .
Now recall that this conclusion requires only that Nt ≥ c ln t for all t.  Consequently, for
all mutation rates below ε  and all times T, conditional on adequate population sizes
before time T, the population size that must be established by time T to virtually assure
history dependence through time T is just c ln T.  Thus, if the modeler is only concerned
with behavior through time T, he need only believe that the population will grow as

13 For convenience, we frame this discussion in the context of the best reply dynamics; similar claims
can be made under the Bernoulli dynamics by applying Theorem 4.
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large as c ln T to expect history dependence.
This reasoning immediately extends to fixed population settings.  Once again,

consider a growing population model in which Nt = c ln t after some initial period,
rounding upward when necessary.  For simplicity, assume that the initial state is
unanimous.  For any α  we can find an     ε (α ,c) such that P(zt = z0 for all t) > 1 – α
whenever the mutation rate is less than     ε (α ,c).  Since increasing the population size in
the early periods can only make jumps during those periods less likely, we have the
following result, stated under the best response dynamics.14

Corollary 2:  Fix α > 0 and c > 0, and let the initial state be unanimous.  Suppose the mutation

rate is less than     ε (α ,c).  Choose a time T and a fixed population size  Nt ≡ N.  If T ≤ exp(N/c),
then P(zt = z0 for all t ≤ T) > 1 – α .

This corollary can be interpreted as follows.  Suppose that the modeler believes the
population size in his object of study to be fixed.  While the modeler will typically have
some estimate of the appropriate time span and population size, he will not know these
data precisely.  Corollary 2 tells him that so long as the length of the relevant time span
is not more than exponentially greater than the population size, history dependence
should be expected.  In most settings of economic interest, this condition will hold, and
hence the history dependent prediction is the relevant one.

4.3  Exit, and Stochastic Behavior by Entrants

In the model presented above, players never leave the population.  However, since
under the best response dynamics the population always coordinates on a unanimous
state, exit cannot affect the proportions of strategies in the population as a whole.  Thus,
Theorems 2 and 3 continue to hold if we allow players to exit, so long as the bounds on
the total population size are maintained.15  Under the Bernoulli dynamics, the
population need not stay close to a unanimous state; therefore, allowing exit can change
the proportion of strategies in the population and so affect our results.

14 The assumption that the initial state is unanimous is considerably stronger than necessary.  If we
suppose instead that the initial state in the growing population model is not unanimous, then for history
dependence to carry over to the fixed population model, we must assume that the players added to the
initial population to construct the fixed population model choose their strategies in a manner which does
not increase the probability of a jump during period zero.
15 In our model, the initial state need not be unanimous.  Therefore, for Theorem 3 to continue to hold
when exit is allowed, we must assume that deaths during period zero do not cause the population to
jump between basins of attraction.
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While we have assumed that entrants play myopic best responses, one might want
to admit the possibility that entrants' behavior is more diverse.  For example, one might
assume that entrants select actions independently according to some probability
distribution which depends on the current state.  In this case, the choices of the entrants
can change the proportions of strategies played in the population.  Nevertheless, results
can still be proved in this case.  Under the best response dynamics, we can allow
stochastic entry behavior if bounds are placed on the proportion of new players
entering the population each period.  Under stochastic updating, our results can be
extended if in addition the probability with which entrants fail to play the myopic best
response is made arbitrarily small.16

5.  Conclusion

We investigate an evolutionary model with independent mutations and population
growth.  Our main result is that as the mutation rate is taken to zero, the probability that
the population never leaves the basin of attraction of the equilibrium in which it begins
approaches one.  In contrast, Kandori, Mailath, and Rob (1993) predict that in the long
run, a fixed population of players will act in accordance with some stationary
distribution which is given independently of the initial conditions.  In our model, it is
the initial state which determines the equilibrium on which the system will settle.

Kandori, Mailath, and Rob (1993) has been praised for yielding unique predictions
from weak rationality and knowledge assumptions.  This approbation seems quite
justified because of the cardinal importance of uniqueness of equilibrium in the context
of solution concepts for one-shot games.  When analyzing one-shot games, the goal of a
unique prediction is central:  multiple predictions, while suggestive, are insufficient,
providing neither a clear prediction to an outside observer nor an adequate guide to
play for an agent involved in the strategic interaction.

In repeated situations like those usually considered in evolutionary economics, some
mechanism beyond individual introspection may serve to coordinate players on a
particular action profile.  We argue that in such contexts, uniqueness of prediction is not

16 For our results to continue to hold under stochastic updating, it is also enough to assume a
deterministic upper bound (less than 1 – x*) on the proportion of entrants who fail to play a best response,
since entry can only break coordination if a very high proportion of entrants fail to play a best response in
a single period.  If the behavior of each entrant is determined independently, such large scale failures,
while unlikely, are always possible.  For this reason, allowing independent behavior by entrants is
essentially equivalent to adding a new source of mutation to the model.  The requirement that the rate of
failure to play a best response be taken to zero should be regarded accordingly.
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only unnecessary, but in many cases is undesirable.  If the evolutionary model is taken
at face value, as genuinely attempting to study the development of norms in a large
population, it is natural to expect that early behavior patterns of the population will
often affect the equilibrium selected. The initial state, while perhaps not meaningful in
an eductive analysis of the underlying normal form game, can be essential when we
consider how a population learns to play.

Thus, in a model which attempts to describe the development of conventions in a
large population, multiple long run predictions should be possible; which prediction is
realized should depend on details of a historical character.  To cite a well known
example, David (1985) has studied the predominance of the long established QWERTY
keyboard arrangement despite the existence of an alternative arrangement which is at
least twenty percent more efficient.  Our results indicate that in the absence of a
centralized effort to switch, we need not expect that such well entrenched standards
will change.

KMR's analysis of economic evolution suggests that in the long run, society’s choices
are independent from its past.  In contrast, our results indicate that historical conditions
can influence society’s ultimate course.  The existence of multiple predictions and
history dependence, rather than being a cause for dissatisfaction, should be viewed as a
natural consequence of economic evolution.

6.  Proofs

6.1  Mathematical Preliminaries

We begin by collecting some mathematical results which will be used in the sequel.
The first is a basic large deviation theory result:  the probability that the sample average
of n  i.i.d. random variables exceeds a constant greater than its mean decreases
exponentially in the number of random variables.

Lemma 1:  Let     Xi{ }i=1

∞
 be  a sequence of i. i. d. random variables with finite support, and let Sn

=     Xii=1

n∑ .  Fix a > EX1.  Then there exists an r < 1 such that

(i) P(Sn ≥ na) ≤ rn for all n, and
(ii)

    
lim
n→∞

1
n ln P(Sn ≥ na) = ln r .

Moreover,
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(iii) If  P(X1 = 1) = ε < a and P(X1 = 0) = 1 – ε, then r = ρ(ε, a) ≡     
ε
a( )a 1−ε

1− a( )1− a
.

Proof:  (i)  For all t > 0, P(Sn ≥ na) = P(    (Xi − a)
i=1

n∑  ≥ 0) = P(exp(t    (Xi − a)
i=1

n∑ ) ≥ 1) ≤

Eexp(t    (Xi − a)
i=1

n∑ ) = M(t)n, where M(t) = Eexp(t(X1 – a)) is the moment generating

function for (X1 – a), and where the final inequality follows from Markov's inequality.
As M(0) = 1, M'(0) = E(X1 – a) < 0, and M''(t) = E(X1 – a)2     e

tX1  > 0,  letting r = 
    
min

t
M(t)

proves the result.
(ii)  See Billingsley (1995, Theorem 9.3).

(iii)  In this case, M(t) is minimized by t* =     ln( a
1− a ⋅ 1−ε

ε ) , so r = M(t*) =     
ε
a( )a 1−ε

1− a( )1− a
.  The

asymptotic tightness of this bound follows from Theorem 9.3 of Billingsley (1995).  ■

The following lemma states the first Borel-Cantelli Lemma as well as a conditional
extension of both Borel-Cantelli Lemmas. The latter can be proved using martingale
methods.

Lemma 2:  Let     {At }t=1
∞  be a sequence of events, and let       F t{ }t=0

∞  be a filtration such that F 0 = {Ø,

Ω} and At ∈  F t for all t ≥ 1.  Then

(i)     P(At ) < ∞
t=1

∞∑  implies that P(At infinitely often (i.o.)) = 0.

(ii) {At i.o.} = 
      

P(At F t−1) = ∞
t=1

∞∑{ }.

Proof:  (i)  By Tonelli's Theorem, 
    
E 1Att=1

∞∑( ) = P(At ) < ∞
t=1

∞∑ , so 
    
P 1At

= ∞
t=1

∞∑( )  = 0.

(ii)  See Durrett (1991, Theorem 4.3.2). ■

Since probabilities conditional on σ-fields are only defined up to an equivalence class,
the equality in the latter result is interpreted as equality up to a set of probability zero.

The next lemma is a well known result from real analysis.

Lemma 3:  Let     xt{ }t=1

∞  be a sequence of numbers in the interval (0, 1).  Then     xtt=1

∞∑  < ∞ if and

only if     (1 − xt )t=1

∞∏  > 0.

Proof:  If xt does not converge to 0, it is clear that neither statement is true.  When

    
lim
t→∞

xt  = 0, the result follows from the observations that     (1 − xt )t=1

∞∏  > 0 if and only if

    ln(1 − xt )t=1

∞∑  > –∞ and that 
    
lim
x→0

ln(1+x)
x  =     

d
dx ln(1 + x) x=0  = 1. ■

The next two lemmas are needed only for the proof of Theorem 2(i)(b).  To state
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them we require one last definition:  we say a sequence     cn{ }n=0

∞  is of bounded variation if

    cn − cn+1n=0

∞∑  < ∞.  The following lemma gives sufficient conditions for the convergence

in distribution of a two state nonhomogenous Markov chain.

Lemma 4:  Let     Xt{ }t=0

∞  be a nonhomogenous Markov chain with state space S = {1, 2}.  Let Mt,

the matrix of the probabilities of transitions between periods t  and t + 1, be given by

    
Mt =

1 – at at

bt 1 − bt









 .

for t ≥ 0.  If  
    

(at + bt )
t=0

∞

∑  = ∞  and 
    

bt

at +bt{ }
t=0

∞
 is of bounded variation, then for any initial

distribution, 
    
lim
t→∞

P(Xt = 1) = lim
t→∞

bt

at +bt
( ).

Proof:  See Isaacson and Madsen (1976, p. 177).  ■

The next lemma shows that a sequence which converges at an exponential rate is of
bounded variation.

Lemma 5:  Let a sequence     cn{ }n=0

∞  be given.  If there exist a constant β < 1 and an integer N

such that 0 ≤ cn ≤   β
n for all n ≥ N, then     cn{ }n=0

∞  is of bounded variation.

Proof:  Since the first N  terms of the sequence cannot affect the result, we can
without loss of generality assume that N = 0.  Let Cn = [cn+1, cn] if cn+1 ≤ cn and [cn, cn+1]
otherwise.  For any x ∈  (0, 1), the upper bound guarantees that cn cannot exceed x once
n >     

ln x
ln β .  Therefore, the number of intervals Cn in which x appears is bounded above by

    
ln x
ln β  + 1.  By Tonelli's Theorem,

    
cn − cn+1

n=0

∞

∑  = 
    

1{x∈Cn } dx
0

1

∫





n=0

∞

∑  = 
    

1{x∈Cn }
n=0

∞

∑



0

1

∫ dx  ≤ 
    

ln x
ln β + 1( )

0

1

∫ dx  =   1 − 1
ln β  < ∞.

Therefore,     cn{ }n=0

∞  is of bounded variation.  ■

The final lemmas are key elements in the proofs of the history dependence results.

Lemma 6:  Let     Xi{ }i=1

∞  be a sequence of independent random variables such that P(Xi = 0) = 1 –

ε for all i ∈  N, and let N be a random variable with range N which is independent of the Xi.
Then 

    
lim
ε →0

P(Xi = 0 ∀i ≤ N) = 1.
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Proof:  Fix η  > 0; we show that for all ε small enough,     P(Xi = 0 ∀i ≤ N) > 1 – η .

Choose m large enough that P(N ≤ m) > (1 – η)(1/2).  Then for any ε < 1 – (1 – η)(1/2m),

P(Xi = 0 ∀  i ≤ N) ≥ P(Xi = 0 ∀  i ≤ N, N ≤ m)
≥ P(Xi = 0 ∀  i ≤ m) P(N ≤ m)
> (1 – ε)m (1 – η)(1/2)

> (1 – η).  ■

Lemma 7:  Suppose that the function f:  N × (0, 1) → (0, 1) satisfies 
    
lim
ε →0

f (t,ε ) → 0 for all t ∈

N, and that there exist an   ̃ε  ∈  (0, 1), an integer T, and a function g:  N → (0, 1) such that f(t, ε)

≤ g(t) for all ε <   ̃ε  and all t ≥ T and that     g(t)
t=1

∞∑ < ∞ .  Then 
    
lim
ε →0

(1 − f (t,ε )) = 1
t=1

∞∏ .

Proof:  We show, equivalently, that 
    
lim
ε →0

ln(1 − f (t,ε )) = 0
t=1

∞∑ .  Since     g(t)
t=1

∞∑ < ∞ ,

Lemma 3 implies that     (1 − g(t))
t=1

∞∏ > 0.  Therefore,     ln(1 − g(t)) > −∞
t=1

∞∑ , with each

term strictly negative.  Fixing some δ > 0, we can find a     ̂T  ≥ T  such that

    ln(1 − g(t)) > − δ
2t=T̂ +1

∞∑ .  We can also choose   ̂ε  <   ̃ε  small enough that ε <   ̂ε  implies that

f(t, ε) < 1 – exp(    
−δ
2T̂

) for all t ≤     ̂T .  For such ε,

    
ln(1 − f (t,ε ))

t=1

∞

∑ = 
    

ln(1 − f (t,ε ))
t=1

T̂

∑  + 
    

ln(1 − f (t,ε ))
t=T̂ +1

∞

∑

≥ 
    

ln(1 − f (t,ε ))
t=1

T̂

∑  + 
    

ln(1 − g(t))
t=T̂ +1

∞

∑
>     ̂T  (    

−δ
2T̂

) + (  
−δ
2 ) = –δ,

completing the proof. ■

6.2  Proofs of Main Results

To conserve on notation, we will use upper bars to denote both a realization of a
random variable and the event that this realization occurs.  For example,   Nt  can refer to

either a particular positive integer or to the event that the random variable Nt takes this
particular value.
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Theorem 2:  Suppose x* >   
1
2  and ε ∈ (0, 1 – x*), and set l = l(ε, x*) and u = u(ε, x*).  Then

under the best response dynamics DBR,

(i)  If Nt   →u ∞ and Nt   <u  l ln t, then

(a) (Wandering) P(
    
lim
t→∞

zt  exists) = 0,

(b) (Selection) Under (J1) and (J2), 
    
lim
t→∞

P(zt = 2) = 1.

(ii)  If   Nt   >u  l ln t and Nt   <u  u ln t, then

(a) (Convergence) P(
    
lim
t→∞

zt  exists) = 1,

(b) (Selection) P(
    
lim
t→∞

zt  = 2) = 1.

(iii)  If Nt   >u  u ln t, then

(a) (Convergence) P(
    
lim
t→∞

zt  exists) = 1,

(b) (Non-selection) P(
    
lim
t→∞

zt  = i) > 0 for i = 1, 2.

Proof of part (i):  We start by proving (a).  Fix ε > 0.  Since Nt   <u  l ln t, there exist a
function L(t), an integer S, and an α > 0 such that Nt ≤ L(t) a.s. for all t ≥ S and L(t) ≤ (l(ε,
x*) – α ) ln t.  Since l(·, ·) is continuous and decreasing in its second argument, there
exists a β > 0 such that l(ε, x* + β) –   

α
2  = l(ε, x*) – α.  Let l = l(ε, x* + β) and ρ = ρ(ε, x* + β),

and let γ = ln ρ + (l –   
α
2 )–1.  It is easily checked that γ is strictly positive.

Observe that for t > 0,

P(zt+1 ≠ zt   zt = 1,   Nt) = P(Mt ≤ –  Nt(1 – x*)) = 
    
P Xt ,ii=1

Nt∑ ≥ Nt(1 – x*)( ) ,

and

P(zt+1 ≠ zt   zt = 2,   Nt) = P(Mt > –  Nt(1 – x*)) = 
    
P Xt ,ii=1

Nt∑ > Nt x *( ) .

Both of these quantities are greater than 
    
P Xt ,ii=1

Nt∑ ≥ Nt (x * + β )( ).
Lemma 1 implies that there exists an m  such that for n  ≥ m  and for all t,

    
1
n ln P Xt ,ii=1

n∑ ≥ n(x * + β )( ) > ln ρ  – γ.  Since Nt   →u ∞, there exists a function K(t) such

that Nt ≥ K(t) a.s. for all t and K(t) → ∞ as t → ∞.  Choose T ≥ S large enough that for all t
≥ T, K(t) > m.  Then for t ≥ T, K(t) ≤ Nt ≤ L(t) almost surely, so for almost all   Nt ,
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P Xt ,ii=1

Nt∑ ≥ Nt (x * + β )( ) >     (ρe−γ )Nt  ≥     (ρe−γ )L(t) ≥     (ρe−γ )(l– (α/2)) ln t

=     (ρe−γ )(l– (α/2))(log(ρ exp(–γ )) t)(ln ρe –γ )  =     t(l– (α/2)) ln(ρe –γ )  = t–1.

We thus conclude that for almost every ω ∈  Ω, P(zt+1 ≠ zt zt = zt(ω), Nt = Nt(ω)) > t–1.
By the Markov property, and since the     F t  are countably generated,       P(zt+1 ≠ zt F t )(ω )

=     P(zt+1 ≠ zt zt = zt(ω ), Nt = Nt(ω )).  Therefore, for almost all ω ∈  Ω,

      
P(zt+1 ≠ zt F t )(ω )

t=0

∞

∑ > 
    

P(zt+1 ≠ zt zt = zt(ω ), Nt = Nt(ω ))
t=T

∞

∑

> 
    

t−1

t=T +1

∞

∑  = ∞.

Thus, by Lemma 2 (ii), P(zt ≠ zt –1 i.o.) = 1.  This completes the proof of (a).
We continue with the proof of (b).  Let   Jt

i  = P(zt+1 ≠ i zt = i) be the probability that a
jump occurs at time t if the state is i, and let   jn

i  = P(zt+1 ≠ i zt = i, Nt = n, t > 0) be the

probability that a jump occurs from state i when the population size is n.  The latter
quantity is well defined since these probabilities are independent of t after period zero.

Since     Nt , zt( ){ }t=0

∞
 is a Markov chain, for t > 0 we have that

P(zt+1 ≠ i zt = i)
= 

    
P(zt+1 ≠ i zt = i; Ns , s ≤ t; zs , s < t) P(

{zs :s<t}
∑

{N s :s≤t}
∑ Ns , s ≤ t; zs , s < t zt = i)

= 
    

P(zt+1 ≠ i zt = i; Nt ) P(
{zs :s<t}
∑

{N s :s≤t}
∑ Ns , s ≤ t; zs , s < t zt = i)

= 
    

P(zt+1 ≠ i zt = i; Nt )
Nt

∑ P(Nt zt = i)

= 
    

j
Nt

i

Nt

∑ P(Nt zt = i).

Once t ≥ T (where T is taken from the proof of (a)), this expression is simply a convex
combination of elements of {  jn

i :  K(t) ≤ n  ≤ L(t)}, and hence is at least     jL(t)
i .  Thus, the

computation in the proof of part (i) shows that this expression is at least t–1.  Therefore,

(1)
    

Jt
1

t≥T
∑  = 

    
Jt

2

t≥T
∑  = ∞.

Recall that Rt =     Jt
2 /(Jt

1 + Jt
2 ).  We have assumed

(J1)
    
lim
t→∞

Rt  = 0, and
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(J2)
    

Rt − Rt+1
t=0

∞

∑  < ∞.

If the process     Nt{ }t=0

∞  is deterministic, the process     zt{ }t=0

∞  is by itself a Markov chain.

Furthermore, the at and bt from Lemma 4 correspond to     Jt
1  and     Jt

2, respectively.

Equation (1) and assumption (J2) show that these transition probabilities satisfy the
conditions of Lemma 4, and so, by (J1), 

    
lim
t→∞

P(zt = 1) = 
    
lim
t→∞

bt

at +bt
 = 

    
lim
t→∞

Rt  = 0, proving the

result.

If     Nt{ }t=0

∞  is not deterministic, then     zt{ }t=0

∞  by itself is not a Markov chain:  its

transition probabilities from period t to period t + 1 depend on the population size Nt,
which itself can depend on values of zs before period t.  To prove the result in this case,

we create an auxiliary process     ẑt{ }t=0

∞  which is a Markov chain and which has the same

one-dimensional distributions as     zt{ }t=0

∞ .  Using a standard technique (see, mutatis

mutandis, Theorem 8.1 of Billingsley (1995)), we can construct a probability space

      (Ω̂ , ˆF , P̂)  and a Markov chain     ẑt{ }t=0

∞  defined on this space with the same initial

distribution and one step transition probabilities as     zt{ }t=0

∞ :

    P̂(ẑ0 = k) =     P(z0 = k);

    P̂(ẑt+1 = l ẑt = k) =     P(zt+1 = l zt = k).

By induction,     ̂zt  and   zt  have the same distribution for all t ≥ 0.  Hence, 
    
lim
t→∞

P(zt = 1) =

    
lim
t→∞

P̂(ẑt = 1), and we only need investigate the behavior of     ẑt{ }t=0

∞ .  However, since by

definition the one step transition probabilities of     ẑt{ }t=0

∞  are the same as the one step

transition probabilities of     zt{ }t=0

∞ , (1) and (J2) imply that     ẑt{ }t=0

∞  satisfies the conditions of

Lemma 4.  Hence, by (J1), 
    
lim
t→∞

P(zt = 1) = 
    
lim
t→∞

P̂(ẑt = 1) = 
    
lim
t→∞

Rt  = 0.  This completes the

proof of (b).

We now show that if     Nt{ }t=0

∞  is deterministic, increasing, and unbounded, then (J1)

and (J2) hold.  Let rn  =     jn
2 /( jn

1 + jn
2 ), and observe that since Nt is a constant, Rt =

    Jt
2 /(Jt

1 + Jt
2 ) =     jNt

2 /( jNt

1 + jNt

2 )  =   rNt
.  Since     Nt{ }t=0

∞  is increasing and 
    
lim
t→∞

Nt = ∞ , by the

triangle inequality it is sufficient to prove that the following conditions hold:

(J1')
    
lim
n→∞

rn  = 0;

(J2')
    

rn − rn+1n= N o

∞∑  < ∞.
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Observe that

    

jn
2

jn
1  = 

    

P Xi > nx *
i=1

n∑( )
P Xi ≥ n(1 − x*)

i=1

n∑( ) ,

where the Xi are i.i.d. with P(Xi = 1) = ε and P(Xi = 0) = 1 – ε.  Let q = ρ(ε, x*)/ρ(ε, 1 – x*).
Since ρ(ε, x*) < ρ(ε, 1 – x*), we can choose γ > 0 such that   qeγ  =     

1+q
2  < 1.  By Lemma 1,

there exists an N  such that for all n  ≥ N, 
    
P Xi ≥ n(1 − x*)

i=1

n∑( ) ≥ (ρ(ε, (1 – x*))e–γ)n.

Therefore, by Lemma 1, for all n ≥ N we have that

rn = 
    

jn
2

jn
1 + jn

2  ≤ 
    

jn
2

jn
1  ≤ 

    

ρ(ε ,x*)
ρ(ε ,(1 − x*))

eγ





n

.

This implies condition (J1').  Furthermore, applying Lemma 5, we see that 
    

rn{ }n= N0

∞  is of

bounded variation, which is condition (J2').  ❏
Proof of part (ii).  Observe that (b) implies (a), so we need only prove (b).  We show

that P(zt = 2 i.o.) = 1 and P((zt = 2 and zt+1 = 1) i.o.) = 0, which together imply the result.
To show that P(zt = 2 i.o.) = 1, we show equivalently that for all R, P(zt = 1 for all t ≥

R) = 0.  Let u = u(ε, x*) and ρ = ρ(ε, 1 – x*).  Since Nt   <u  u ln t, there exist a function U(t)
and a constant S such that Nt ≤ U(t) a.s. for all t ≥ S and U(t) ≤ (u – α) ln t for some α > 0.
Let γ = ln ρ + (u – α)–1, and observe that γ > 0.  Lemma 1 implies that there exists an m

such that for n ≥ m and for all t, 
    
1
n ln P Xt ,ii=1

n∑ ≥ n(1 − x*)( ) > ln ρ – γ.  Since Nt   >u  l ln t,

we can choose T ≥ S large enough that for all t ≥ T, Nt ≥ m almost surely.
For any t ≥ T,

    P(zt+1 = 2 zt = 1, Nt ) = P(Mt ≤ –  Nt(1 – x*)) = 
    
P Xt ,ii=1

Nt∑ ≥ Nt(1 – x*)( ) .

Since Nt ≤ U(t) a.s., we see that for almost every   Nt ,

(2) P(zt+1 = 2   zt = 1,   Nt) >     (ρe−γ )U (t)  ≥     (ρe−γ )(u−α ) ln t  = t–1.

Therefore,

(3)
    

(ρe−γ )U (t)

t=T

∞

∑  > 
    

t−1

t=T

∞

∑  = ∞.
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Now let V = max{T, R}.  Then since     Nt , zt( ){ }t=0

∞
 is a Markov chain, inequalities (2) and

(3) and Lemma 3 imply that

P(zt = 1 for all t ≥ R) ≤ P(zt = 1 for all t ≥ V)

= P(zV = 1) 
    

P(zt+1 = 1 zs = 1,V ≤ s ≤ t)
t=V

∞

∏

≤ 
    

1 − P(zt+1 = 2 zs = 1,V ≤ s ≤ t)( )
t=V

∞

∏

≤ 
    

(1 − (ρe−γ )U (t)

t=V

∞

∏ ) = 0.

Hence, P(zt = 2 i.o.) = 1.
Now, we want to show that P((zt+1 = 1 and zt = 2) i.o.) = 0.  Let ρ = ρ(ε, x*) and l = l(ε,

x*).  Since Nt   >u  l ln t, there exist a function L(t), an integer T, and an α > 0 such that Nt ≥
L(t) a.s. and L(t) ≥ (l + α) ln t for all t ≥ T.  Observe that

(4) P(zt+1 = 1, zt = 2   zt ,   Nt) = 
    

0 if zt = 1
P(zt+1 = 1 zt = 2, Nt ) if zt = 2.





Also, observe that

    P(zt+1 = 1 zt = 2, Nt ) = P(Mt >   Ntx*) ≤ 
    
P Xt ,ii=1

Nt∑ ≥ Nt x *( )  ≤   ρ
Nt .

Fix t ≥ T.  Since   Nt  ≥ L(t) a.s., for almost every   Nt , we have that

    P(zt+1 = 1 zt = 2) ≤ ρL(t) ≤ ρ(l+α) ln t= t(l+α) ln ρ.

Hence, for such t, P(zt+1 = 1 and zt = 2) ≤  t(l+α) ln ρ.  Therefore, since l ln ρ = –1, (l + α) ln ρ
< –1, so for almost every ω ∈  Ω, we have that

    
P(zt = 2, zt+1 = 1

t=0

∞

∑ ) ≤ T + 
    

t(l+α ) ln ρ

t=T

∞

∑  < ∞.

So, Lemma 2 (i) implies that P((zt = 2 and zt+1 = 1) i.o.) = 0.  This completes the proof of
part (ii).  ❏

Proof of part (iii):  We begin with the proof of (a).  Observe that
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P(zt ≠ zt+1   zt ,   Nt) = 

    

P( Xt ,i ≥ Nt(1 – x*))
t=1

Nt∑ if zt = 1

P( Xt ,i > Nt x*)
t=1

Nt∑ if zt = 2.







For any fixed   Nt , the former expression is larger than the latter.  Therefore, letting ρ =

ρ(ε, 1 – x*) and u = u(ε, x*), the proof is completed by repeating the argument following
equation (4), making the appropriate substitutions.

We conclude with the proof of part (b).  We prove that P(zt = 2 for all t ≥ 1) > 0; that
P(zt = 1 for all t ≥ 1) > 0 can be proved in like fashion.  Let ρ = ρ(ε, x*) and l = l(ε, x*).
Since Nt   >u  l ln t, there exist a function L(t), an integer T, and an α > 0 such that Nt ≥ L(t)
a.s. and L(t) ≥ (l + α) ln t for all t ≥ T.  Then, for all t ≥ T,

(5) P(zt+1 = 1 zt = 2,   Nt) = 
    
P Xt ,ii=1

Nt∑ ≥ Nt x *( )  ≤   ρ
Nt  ≤ρ(l+α) ln t.

Since l ln ρ = –1, (l + α) ln ρ < –1, which implies that

(6)
    

ρ(l+α ) ln t

t=1

∞

∑  < ∞.

Consequently, as     Nt , zt( ){ }t=0

∞
 is a Markov chain, inequalities (5) and (6) and Lemma 3

imply that

(7) P(zt = 2 for all t ≥ 1) = P(z1 = 2) 
    

P(zt+1 = 2 zs = 2 ∀s = 1,... ,t)
t=1

∞

∏

= P(z1 = 2) 
    

1 − P(zt+1 = 1zs = 2 ∀s = 1,... ,t)( )
t=1

∞

∏

≥ P(z1 = 2) 
    

(1 − ρ(l+α ) ln t

t=1

∞

∏ ) > 0.

This concludes the proof of Theorem 2.  ■

Theorem 3 (History Dependence):  Suppose that Nt ∈  Ωu(ln t).  Then under the best response

dynamics DBR, 
    
lim
ε →0

P(zt = z0 for all t) = 1.

Proof:  We give the proof for the case in which z0 = 2; the proof when z0 = 1 is nearly
identical, replacing ρ(·, x*) and l(·, x*) with ρ(·, 1 – x* – β) and u(·, x* + β) for some β ∈  (0,

    
1−x*

2 ).
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Since Nt ∈  Ωu(ln t), there exist a function L(t), an integer T, and a constant k > 0 such
that Nt ≥ L(t) a.s. for all t ≥ T and L(t) ≥ k ln t for all t ≥ T.  Choose   ̃ε  small enough that
l(  ̃ε , x*) =     

k
2 .  Then for any ε <   ̃ε , Nt   >u  l(ε, x*) ln t, so mimicking expressions (5) and (6),

we see that for all t ≥ T, all ε <   ̃ε , and almost every   Nt ,

(8)     P(zt+1 = 1 zt = 2, Nt ) ≤     ρ(ε ,x*)k ln t  ≤     ρ(ε̃ ,x*)k ln t ,

and that

(9)
    

ρ(ε̃ ,x*)k ln t

t=T

∞

∑  = 
    

t−2

t=T

∞

∑  < ∞.

Since z0 = 2 by assumption,

P(zt = 2 ∀  t ≥ 0) = 
    

P(zt+1 = 2 zs = 2∀
t=0

∞

∏ s ≤ t) .

Now for all t ≥ 0,

    P(zt+1 = 2 zs = 2∀s ≤ t)  ≥     P(Xt ,i = 0 ∀i ≤ Nt zs = 2∀s ≤ t) ≥     P(Xt ,i = 0 ∀i ≤ Nt ).

Lemma 6 implies that this last expression approaches one as ε vanishes.  Consequently,
letting f(t, ε) =     P(zt+1 = 1 zs = 2∀s ≤ t), we see that for all t ≥ 0, 

    
lim
ε →0

f (t,ε ) = 0.

Finally, define

    
g(t) =

1 if t < T ,
ρ(ε̃ ,x*)k ln t otherwise.





By inequality (9), g(t) is summable; furthermore, since     Nt , zt( ){ }t=0

∞
 is a Markov chain,

inequality (8) implies that f(t, ε) ≤ g(t) for all ε <   ̃ε .  Therefore, by Lemma 7,

    
lim
ε →0

P(zt = 2 ∀t ≥ 0) = 
    
lim
ε →0

P(zt+1 = 2 zs = 2∀
t=0

∞

∏ s ≤ t)  = 
    
lim
ε →0

(1 − f (t,ε ))
t=0

∞

∏  = 1.  ■

Theorem 4:  Fix the Bernoulli dynamics Dθ for some θ > 0, and suppose that z0 ≠ 0.  If Nt   >u  k

ln t for some sufficiently large k, then 
    
lim
ε →0

P(zt = z0 for all t) = 1.

Proof:  Assume that z0 = 2; the other case is proved in a similar fashion.  Let l = min{j ∈



– 35 –

N: j ≥     
8−2x*

x* }.  Let   ̃ε  = min{    
θ
2l ,     

x*
8 }.  Fixing ε =   ̃ε , observe that for every t,

Yi = 
    

Xt ,l(i−1)+ j − Ut ,i
j=1

l

∑

has finite support and satisfies EYi = lε – θ ≤   
θ
2  – θ < 0.  Therefore, by Lemma 1 (i), there

exists an r < 1 such that

    
P Yi ≥ 0

i=1

n∑( ) ≤ rn .

This inequality continues hold with the value of r fixed if ε takes any value less than   ̃ε .
Let s =     r(x*/8) .  Choose k = 2 max {–(ln ρ(  ̃ε ,     

x*
4 ))–1, –(ln s)–1}.  Since by assumption Nt

  ≥u  k ln t, there exist a function L(t) and an integer T such that Nt ≥ L(t) a.s. and L(t) ≥ k ln
t > max {2N0,     

8
x* } for all t ≥ T.  Since entrants play best responses, this implies that if no

mutations occur through time T, ζT ≤     
NT x*

2  almost surely.

Suppose t ≥ T , and fix ε  <   ̃ε .  If     (ζt , Nt ) satisfies   ζt ≤     
Nt x*

4 , we can bound the

probability that     ζt+1 jumps beyond     
Nt+1x*

2  as follows:

    
P ζt+1 ≥ Nt x*

2 ζt , Nt( ) ≤ 
    
P Mt ≥ Nt x*

4( )
≤ 

    
P Xt ,it=1

Nt∑ ≥ Nt x*
4( )

≤     ρ(ε , x*
4 )Nt .

On the other hand, if     (ζt , Nt ) satisfies     
Nt x*

4  ≤   ζt ≤     
Nt x*

2 , we can bound the probability that

    ζt+1 > ζt .

    
P ζt+1 > ζt ζt , Nt( ) ≤ 

    
P Mt + Dt > 0ζt , Nt( )

= 
    
P Mt > Nt x*

4 , Mt + Dt > 0ζt , Nt( )  + 
    
P 0 < Mt ≤ Nt x*

4 , Mt + Dt > 0ζt , Nt( )
+ 

    
P Mt ≤ 0, Mt + Dt > 0ζt , Nt( )

(10) = 
    
P Mt > Nt x*

4 , Mt + Dt > 0ζt , Nt( )  + 
    
P 0 < Mt ≤ Nt x*

4 , Mt + Dt > 0ζt , Nt( ) .

The last equality holds because if mutations reduce the number of s1 players, so too will
updates:  if zt = 2 and Mt ≤ 0, then Dt ≤ 0.

The first term in expression (10) can be bounded as follows:
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P Mt > Nt x*

4 , Mt + Dt > 0ζt , Nt( )  ≤ 
    
P Mt ≥ Nt x*

4( ) ≤     ρ(ε , x*
4 )Nt .

On the other hand, if Mt ≤     
Nt x*

4 , then ζt + Mt ≤     
Nt x*

2  <     Ntx *, so s1 players who receive the

learning draw update to s2.  Thus, to bound the second term in expression (10), we use
the law of large deviations to show that if the proportion of s1 players is not too small,
mutations from s2 to s1 are very likely to be canceled by s1 players updating their
strategies to s2.  Let [·] denote the greatest integer function.  Since l ≥      

8−2x*
x* , for n ≥     

8
x*  we

see that

    l
nx*

4[ ] ≥     
8−2x*

x*( ) nx*
4 − 1( )

=     1 − x*
4( ) x*

4 − x*
8( )−1 nx*

4 − 1( )
≥     1 − x*

4( ) x*
4 − 1

n( )−1
n x*

4 − 1
n( )

=     n 1 − x*
4( ) ≥     n 1 − x*

4[ ].

So, since   Nt  ≥     
8
x*  a.s., we see that for almost every   Nt ,

    
P 0 < Mt ≤ Nt x*

4 , Mt + Dt > 0ζt , Nt( )
= 

    
P 0 < Mt ≤ Nt x*

4 , Mt − Ut ,ii=1

ζ t + Nt∑ > 0ζt , Nt( )
≤ 

    
P − Xt ,ii=1

ζ t∑ + Xt ,ij=ζ t +1

Nt∑ − Ut ,ii=1

ζ t + Nt∑ > 0ζt , Nt( )
≤ 

    
P Xt ,ij=1

[Nt (1−(x*/4))]∑ − Ut ,ii=1

[Nt (x*/4)]∑ > 0ζt , Nt( )
≤ 

    
P Xt ,ij=1

l[Nt (x*/4)]∑ − Ut ,ii=1

[Nt (x*/4)]∑ > 0





≤ 
    
P Xt ,l(i−1)+ jj=1

l∑ − Ut ,i( )i=1

[Nt (x*/4)]∑ > 0





≤     r[Nt (x*/4)].

If n ≥     
8
x* , then     

nx*
4[ ] ≥     

nx*
4 − 1 =     n

x*
4 − 1

n( )  ≥     
nx*

8 .  Therefore, since Nt ≥     
8
x*  a.s., and since s =

    r(x*/8) , we see that for almost every   Nt ,

    r[Nt (x*/4)] ≤     rNt (x*/8) =   sNt .

Since Nt ≥ L (t) a.s. for all t ≥ T , we conclude that for these t and for any     (ζt , Nt )

satisfying   ζt ≤     
Nt x*

2 ,
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(11)
    
P ζt+1 > Nt x*

2 ζt , Nt( )  ≤     ρ(ε , x*
4 )Nt  +   sNt  ≤     ρ(ε , x*

4 )L(t) + sL(t) .

Moreover, by our choice of k we have that

(12)
    

ρ(ε , x*
4 )L(t) + sL(t)( )

t=T

∞

∑ ≤ 
    

ρ(ε̃ , x*
4 )k ln t + sk ln t( )

t=T

∞

∑  ≤ 
    

2t−2

t=T

∞

∑  < ∞.

We want to show that 
    
lim
ε →0

P(zt = 2 ∀t ≥ 0) = 1.  For t ≥ T, let St ⊆  Ω be given by St = {zs

= 2 ∀  s ≤ T, ζu ≤     
Nux*

2  ∀  u = T, ... ,t}.  Then for all ε <   ̃ε ,

P(zt = 2 ∀  t ≥ 0) ≥ P(zt = 2 ∀  t ≤ T, ζT ≤     
NT x*

2 ) 
    

P(ζt+1 ≤ Nt+1x*
2 St

t=T

∞

∏ )

≥ P(zt = 2 ∀  t ≤ T, ζT ≤     
NT x*

2 ) 
    

P(ζt+1 ≤ Nt x*
2 St

t=T

∞

∏ ).

Applying Lemma 6 in periods zero through T – 1, and recalling the observation that if
no mutations occur through period T, ζT ≤     

NT x*
2 , we see that 

  
lim
ε →0

P(zt = 2 ∀  t ≤ T – 1, ζT ≤

    
NT x*

2 ) = 1.  To bound the second term, we apply Lemmas 6 and 7.  Since     Nt , zt( ){ }t=0

∞
 is a

Markov chain, inequality (11) implies that for each t ≥ T , f(t, ε) =     P(ζt+1 > Nt x*
2 St ) is

bounded above by g(t) ≡      ρ(ε̃ , x*
4 )L(t) + sL(t) .  Inequality (12) tells us that     g(t)

t=T

∞∑  < ∞ .

Furthermore, by Lemma 6,

  
lim
ε →0     P(ζt+1 ≤ Nt x*

2 St ) ≥ 
  
lim
ε →0     P(Xt ,i = 0 ∀i ≤ Nt St )  ≥ 

  
lim
ε →0     P(Xt ,i = 0 ∀i ≤ Nt ) = 1

for all t ≥ T.  Therefore, for such t, 
  
lim
ε →0

f(t, ε) = 
  
lim
ε →0     P(ζt+1 > Nt x*

2 St ) = 0 .  Thus, by Lemma

7, 
  
lim
ε →0     P(ζt+1 ≤ Nt x*

2 St )t=T

∞∏  = 1, and so we conclude that 
  
lim
ε →0

P(zt = 2 ∀  t ≥ 0) = 1.  ■
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