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Abstract

We study the evolutionary stability of purified equilibria
of two-player normal form games, providing simple
sufficient conditions for stability and for instability under
the Bayesian best response dynamic.
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1. Introduction

In a mixed equilibrium of a normal form game, each player is indifferent between
his equilibrium strategy and all other strategies with the same support. This raises the
question of why we should expect players to randomize in precisely the fashion that
their equilibrium strategies dictate.

To address this issue, Harsanyi [12] shows that every equilibrium of almost every
normal form game can be viewed as a strict equilibrium of a Bayesian game created by
slightly perturbing the payoffs of the normal form game. In fact, Harsanyi proves that
these purified equilibria exist regardless of the distribution of payoff noises so long as
these noises become small.

In this paper, we establish general sufficient conditions for the stability and
instability of purified equilibria of two-player normal form games under evolutionary
dynamics. To do so, we introduce a population interpretation of Harsanyi’s perturbed
game. Instead of viewing this game as being played by a small group of players, each
of whom has many possible type realizations, we replace each player with a population
of small agents, and assume that in each of these populations, the entire type
distribution is realized at once.

In studying stability, we adopt the view of Binmore and Samuelson [2] and Ellison
and Fudenberg [5] that the relevant payoff perturbations in real world environments
need not be especially small. Therefore, none of our conditions for stability or
instability requires payoff perturbations to vanish in size.

To pose our questions, we must fix our notions of stability and instability by
specifying an evolutionary dynamic for Bayesian population games. For this, we rely
on the Bayesian best response dynamic of Ely and Sandholm [6], under which the
behavior of the subpopulation of agents of type 6 adjusts in the direction type 6's
current best response. Ely and Sandholm [6] show that the rest points of the Bayesian
best response dynamic are precisely the Bayesian equilibria of the underlying game,
and they prove that stability analysis for their infinite dimensional dynamic reduces to
stability analysis of a finite dimensional dynamic that describes the evolution of
aggregate behavior. The work of Ely and Sandholm [6] serves two roles in the present
study: it provides the dynamic used to define evolutionary stability, and it supplies the
techniques that allow the analysis of stability to be performed using finite dimensional
methods.

To begin our analysis, we observe that the relevant finite dimensional dynamic is
equivalent to the perturbed best response dynamic, a dynamic introduced in the study
of the learning process known as stochastic fictitious play (Fudenberg and Kreps [8]). A
variety of methods of analyzing the perturbed best response dynamic now exist, based
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alternatively on linearization, Lyapunov’s direct method, and the theory of monotone
dynamical systems—see Hopkins [20], Hofbauer [14], Hofbauer and Sandholm [17, 18],
and Hofbauer and Hopkins [15]. By developing these tools, we are able to establish
simple sufficient conditions for stability and instability of purified equilibria under the
Bayesian best response dynamic, and to provide intuition about the features of games
and type distributions that drive stability and instability. Two implications of our
results are especially worthy of note: our sufficient conditions imply that every Nash
equilibrium of every normal form game can be purified in a stable fashion, but that
there are normal form games whose Nash equilibria cannot be purified in an unstable
fashion.

Dynamic stability of purified equilibria was first studied by Ellison and Fudenberg
[5], who consider the stability of purified equilibria under population fictitious play.’
Like Harsanyi, Ellison and Fudenberg [5] parameterize the distribution of types by a
scalar disturbance level.> They study local stability of purified equilibria as this level
becomes small, providing necessary and sufficient conditions for stability of sequences
of purified equilibria of 2 x 2 and 3 x 3 games. Our analysis extends Ellison and
Fudenberg’s on many fronts: we offer sufficient conditions for both stability and
instability of purified equilibrium; our conditions apply to games with arbitrary
numbers of strategies; and these conditions hold force whether or not payoff
perturbations are small.

Ellison and Fudenberg [5] provide examples of games whose mixed equilibria only
admit sequences of unstable purifications. While at first glance these examples might
appear to contradict our general result on the existence of stable purifications, this
apparent discrepancy is easily resolved. By using a parameterization to introduce the
small noise limit, Ellison and Fudenberg [5] implicitly impose restrictions on payoff
perturbations other than the restriction that these perturbations become small: in
particular, their parameterization forces the densities of the smallest perturbations to
grow without bound. We show that it is this restriction that drives their instability
results; without it, stable purification is always possible.

In fact, our analysis affirms and even strengthens Ellison and Fudenberg’s [5] main
conclusions. These authors describe their results as “fairly supportive of the idea that

! In population fictitious play, agents in a large population always play best responses to their current

beliefs, which are defined to equal the time average of the population’s past behavior. Population
fictitious play is equivalent after a reparameterization of time to our aggregate best response dynamic,
and hence to the perturbed best response dynamic. For a detailed explanation of this point, see Ely and
Sandholm [6].

2 In particular, they describe some fixed distribution of payoff perturbations using a random vector 6;
to reduce the noise level, they suppose that the actual distribution of perturbations is given by the
rescaled random vector &6 .
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populations may learn to play certain mixed strategy equilibria” (p. 86). In this paper,
we provide general, intuitive conditions for stability of purifications; we impose no
restrictions on the number of available strategies and only limited restrictions on the
nature of the distributions of types. Therefore, our analysis substantially augments the
set of environments in which stable purification is known to occur.?

2. Bayesian Population Games and Purification of Equilibrium

We analyze the stability of purified equilibria in two different contexts: pairwise
random matching of a single population to play a symmetric two player normal form
game, and pairwise random matching of two populations to play a general two player
normal form game. We begin by introducing the definitions we require.

2.1 Normal Form Games

In a symmetric two player normal form game, the two players have the same strategy set
S' ={1, ..., n'} and the same payoff matrix A € R™"; A, is the payoff a player obtains if
he plays i and his opponent plays j. Mixed strategies for each player are elements of the
simplex X' = {x' eR": .sXi = 1}. For reasons that will become clear in the next
subsection, we sometimes omit the superscripts from our notation when working in this
symmetric setting.

In a (standard) two player normal form game, players 1 and 2 have strategy sets S' = {1,
..., n'}and §* = {1, ..., n*} and payoff matrices A € R and Be R™ . When the
players select strategies i € S' and j € S?, they obtain payoffs of A, and B, respectively.
Player p’s mixed strategies are elements of X? = {x” € R” : Zies,, x! =1}, while mixed
strategy profiles x = (x', x*) are elements of X' x X*.

2.2 Population Games Defined By Random Matching

We consider two models of random matching in large populations corresponding to
the two classes of normal form games described above. Under single population (or
symmetric) matching, pairs of agents are chosen at random from a unit mass population
to play the symmetric normal form game A € R"*" . Under two population (or standard)
matching, one agent is chosen at random from each of two unit mass populations, and

> We know of three other papers that consider purification in evolutionary contexts. Binmore and

Samuelson [3] use static evolutionary stability concepts to analyze the tension between the instability of
mixed equilibria when players may condition behavior on roles and the stabilizing effects of payoff
perturbations. Sandholm [25] studies the robustness of purified equilibria to the evolution of preferences.
Finally, Echenique and Edlin [4] address the instability of purified mixed equilibria in supermodular
games.
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the pair of agents then face one another in the normal form game (A, B) € R"*" x
R

To define a common notation for the one and two population cases, we let p (equal
to 1 or 2) denote the number of populations in the situation at hand and let P (equal to
{1} or {1, 2}) denote the set of populations. Inboth cases, we let X = R" denote the set of
social states; elements of X specify the distribution of strategies in each populationp € P.
In the single population case, n = n', and X = X' is just the simplex; in the two
population case, n = n' + n®,and X = X' x X* is the product of two simplices.

Agents evaluate strategies by computing their expected payoffs at the current social

state. In the single population case, the (expected) payoff to choosing strategy i € S at
social state x is

F(x) = ZA,.].xl. .

jeS

Therefore, the payoffs to all strategies are described by the vector field F: X — R",
defined by

F(x) = Ax.
In the two population case, the payoffs to strategiesie S' andje S are

F'(x*)= ZA,.jxf and F(x') =Zx:Bil..

jes ieS

Thus, the payoffs to all strategies in both populations are described by the vector field F:
X - R", where

1.2 O A 1
F(x) = F'(x?) _(° x2 |
F2(x') B 0 )\«x
We sometimes write F¥(x) for F’(x7) when it is convenient to do so.

We conclude by reviewing the relevant definition of equilibrium for each setting.
State x* € X' is a symmetric Nash equilibrium of the symmetric normal form game A if

x* >0 implies that F(x*) > F,(x*) forall i’ €S'.
Similarly, state x* = ((x*)',(x*)*) is a Nash equilibrium of the normal form game (4, B) if

(x*)!> 0 implies that F}(x*) = F}(x*) forall #* € §', and
(x*)?> 0 implies that F2(x*) > FX(x") forall j' € §°.
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2.3 Bayesian Population Games

In a Bayesian population game, different agents within each population p € P have
different payoff functions. In the present model, an agent in population p who chooses
strategy i receives a payoff of FF(x) + 67. The first term in this sum, F’(x), is the
common payoff to strategy i; it is determined by the underlying normal form game and is
the same for all agents in population p. The second term, 67, is the agent’s idiosyncratic
payoff to strategy i. Itis a component of the agents’ type, a vector that we denote by 6” €
@’ =R" *

The measure u” on @’ represents the (realized) distribution of types in population
p € P. We assume that u? satisfies the smoothness assumptions utilized in Ely and
Sandholm [6] and Hofbauer and Sandholm [17], so that the results from those papers
can be applied in our analysis’ We let 4 = {u"},, denote the profile of type
distributions.® The Bayesian population game generated by the common payoff function F
and the profile of type distributions u is denoted BG(F, p).

A complete description of population p's behavior is given by a Bayesian strategy o’
€ X" ={o?: @ — X"}. The strategy distribution 07 (6”) € X’ describes the behavior
of the subpopulation of players from population p who are of type 6”. Bayesian
strategies that specify the same strategy distribution for almost all subpopulations are
considered equivalent. If we let ~ =Hp6?2” , then each o = {07}
Bayesian strategy profile.

Aggregate behavior in population p is described by E* 67 = j@p of(67)du’(67) € X*,
while E*c = {E¥ 67 },er € X describes aggregate behavior in the whole society. We omit
superscripts from the expectation operators when no confusion will arise.

The Bayesian best response function B?: X — X7 is a map from social states to optimal
Bayesian strategies for population p. These optimal Bayesian strategies involve best
responses by almost all types 6" € ©7:

,p € 2 is called a

B? (x)(67) = argmax y”-(F"(x)+6F).

yP eXP

We let B(x) = HpeT B?(x) denote the profile of best response functions.

*  This specification of types follows Ellison and Fudenberg [5]. In contrast, Harsanyi allows an agent’s

type to specify an idiosyncratic payoff that depends not only on his own choice of strategy, but also on
his opponent’s choice of strategy.

> In particular, we assume that u’ admits a bounded density, that the function B" (defined below) is
Lipschitz continuous, and that the function C” (also defined below) is continuously differentiable at all
equilibrium payoff vectors 7’.

¢ Of course, “profiles” in the single population case actually consist of a single element.
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The Bayesian strategy profile o € Xis a Bayesian equilibrium of BG(F, p) if o = B(E0).
Put differently, a Bayesian strategy profile is a Bayesian equilibrium if almost all
subpopulations play best responses to the current population state.

2.4 Purification

In order to define purified equilibria of normal form games, we must say what it
means for a Bayesian game to be close to a normal form game. In the symmetric case,
we say that BG(F, u) is an e-approximation of the normal form game A if

(i) F(x) = Ax, and
(i) ue: 8| >e<e

The second requirement asks that most of the mass in the type distribution u be placed
near the origin. Similarly, in the standard case we call BG(F, u) an g-approximation of
the normal form game (A, B) if

. 0 Al x
(1) F(x) = [B’ OJ[xz}' and
() ,u”{@”:l@”'>e}<8forpe{1,2}.

In either setting, we say that the Bayesian strategy o is an e-purification of the Nash
equilibrium x* if

(?) BG(F, u) is an g-approximation of F,
(if) ois a Bayesian equilibrium of BG(F, u), and
(i) |x—x*| < & where x = Eto.

Our three conditions for o to be a purification of x* require (i) that the game with
perturbed payoffs be close to those of the original game, (ii) that o be a Bayesian
equilibrium of the perturbed game, and (iii) that the strategy distribution x = E‘oc
induced by obe close to x*.

In his analysis of purification, Harsanyi fixes an arbitrary profile of smooth type
distributions u”, and then uses these “fixed” distributions to define sequences of type
distributions u’ parameterized by &’ He then proves that for all sufficiently small

7

In particular, y’ is defined by u’(eT”)= u’(T") for all measurable T ¢ ©”. Ellison and Fudenberg
[5] also employ this parameterization.
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values of € and for almost every normal form game, all Nash equilibria of the normal
form game have purifications in the approximating Bayesian game BG(F, y,). In fact, if
one allows oneself to tailor the type distributions to the game and equilibrium in
question, then it is easy to show that every Nash equilibrium x* of every normal form
game can be exactly purified. For example, if we assume that the mass of agents biased
in favor of each pure strategy i € S’ is equal to the mass placed on this pure strategy in
x*, then the Bayesian strategy in which each agent plays his favored strategy is a
purification of x*.°

The main reason for restricting attention to small perturbations is to prove that in
almost all cases, purified versions of x* exist independently of the choice of the “fixed”
type distribution u?. In this paper, our goal is to determine the extent to which
heterogeneity in preferences existing in real life settings can generate stable
polymorphic equilibria. For this reason, none of the results to follow depend on the
noise level € being small. In fact, as we discuss below, our stability results are most
robust when the noise level ¢ is not especially small.’

3. The Bayesian Best Response Dynamic and Stable Purification

In order to study the evolutionary stability of purified equilibria, we must introduce
an evolutionary dynamic on Z, the space of Bayesian strategy profiles. This role is filled
by the Bayesian best response dynamic of Ely and Sandholm [6], an extension of the
best response dynamic of Gilboa and Matsui [11] to Bayesian games with a continuum
of types.

3.1 The Bayesian Best Response Dynamic

The Bayesian best response dynamic is defined on Zby
(B) 67 = B*(Eo) -o°.

Solutions to this dynamic are defined in terms of the L' norm on X’

n?
|o"] = XE|ot].
i=1

®  More precisely: For each populatlon p € Pand each strategy i € S”, define the set of types e’ c o’

by 8" ={6": 6" >0and 9 < 0 for j = i}, and suppose that the measure " satisfies u’ (O’ ) = (x*)’.
Then it is easy to see that the BayeSIan strategy o in which agents of typesin O/ play strategy ie S"isa
Bayesian equilibrium, and that this equilibrium exactly purifies x*, in the sense that Eo = x*.

* " In not focusing exclusively on the small noise limit, we take the view of Ellison and Fudenberg [5]
that “a substantial degree of heterogeneity is an important feature of real world learning” (p. 112).
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Ely and Sandholm [6] show that solutions to (B) from every initial condition in X exist
and are unique, and that the rest points of this dynamic are precisely the Bayesian
equilibria of BG(F, u)."

Since Bayesian strategy profiles are infinite dimensional objects, dynamics on the
space X are difficult to analyze directly. To contend with this problem, Ely and
Sandholm [6] establish close connections between the Bayesian best response dynamic
(B) on the function space X and the aggregate best response dynamic

(AB) %7 = E(BP(x)) — x”

on X c R". In particular, they prove (i) that aggregate behavior x* is a rest point of (AB)
if and only if the Bayesian strategy ¢* = B(x*) is a rest point of (B), and hence a Bayesian
equilibrium; (i7) that the dynamic (AB) describes the evolution of aggregate behavior Ec
€ X under the dynamic (B); and (iii) that x* is stable under (AB) if and only if B(x*) is
stable under (B), where “stable” can refer to Lyapunov, asymptotic, or global
asymptotic stability.

3.2 The Perturbed Best Response Dynamic

Since the composition EcB”: X — X" used to define the dynamic (AB) involves an
intermediate step through the function space %, computations involving E<B can be
cumbersome. Much of the analysis to follow relies on the fact that this composition can
be expressed in a simpler way. Following Hofbauer and Sandholm [16], we define the
choice probability function C”: R” — X” for the distribution y’ by

Cl(n") = /.t”(@”: i € arg max ﬂ]”+6;’j.

jes?

In words, C?(n”)is the proportion of types in population p who find strategy i optimal
when the common payoff vector is 77. We then define the perturbed best response
function B": X — X" for the pair (F, u) by the composition B? = C? o F?. It follows from
these definitions that

EB/(x) = [, B/(x)(6")du’(6")
= @(6": Bl (x)(0") = 1)

1 Ely and Sandholm's [6] results are stated for a single population model, but they extend immediately

to multipopulation settings.
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= pP(6” : argmax
= B'(x).

F/(x)+6F =1)

keSP

That is, the composition E B is identical to B”. This observation immediately implies

Proposition 3.1: The aggregate best response dynamic (AB) is equivalent to the perturbed
best response dynamic

(P) X" = B (x) - x”.

The perturbed best response dynamic first appears in Fudenberg and Kreps's [8]
model of stochastic fictitious play, where it arises as a description of the expected
motion of the time average of play. Hopkins [20], Hofbauer [14], Hofbauer and
Sandholm [17, 18] and Hofbauer and Hopkins [15] use techniques ranging from
linearization and Lyapunov’s direct method to the theory of monotone dynamical
systems to study the stability of rest points of (P). In the remainder of this paper, we
build on these analyses in order to examine the stability of purified equilibria under the
Bayesian best response dynamic (B).

3.3 Stable Purification via Linearization

Suppose we are given a normal form game, a Nash equilibrium x* the type
distributions u”, and a purified equilibrium 0. How can we determine whether o is
stable under the Bayesian best response dynamic (B)?

As noted above, stability of the Bayesian equilibrium ¢ under the dynamic (B) is
equivalent to stability of the distribution x = E“o under the perturbed best response
dynamic (P). A standard method of determining local stability of rest points of
ordinary differential equations like (P) is linearization. In the symmetric case, the
dynamic (P) is defined on X by

(P1) % = B(x) -x,

so the linearization of the dynamic can be expressed in terms of the derivative matrix
DB(x). In the standard case, the dynamic (P) is defined on X = X' x X* by

Bl 2 1
) x=| BB
B*(x") X
so the linearization involves the two derivative matrices DB'(x?) and DB?*(x').
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These derivative matrices provide some information that is superfluous to our
stability analyses. Focusing for the moment on the symmetric case, the derivative
matrix DB(x) tells us how the perturbed best response B(x) changes as we move away
from x € X in any direction v € R": by Taylor’s formula, B(x+v) = B(x) + DB(x)v +
0(|v|). But since the population’s mass is fixed at one, the only relevant displacement
directions are those that leave the population’s mass constant. These directions are
contained in the set Rf = {z € R": ) .z, = 0}, the tangent space for the single
population state space X. We sometimes write TX instead of R for emphasis. In the
two population case, both populations’ masses are fixed at one, so the tangent space for
XisTX =TX' x TX* = R" x RV .

In light of these observations, we define

= max{Re(A): Ais an eigenvalue of DB(x) restricted to Rj}; and
= max{Re(+/1): 1isan eigenvalue of DB'(x?) DB(x") restricted to Rgl }
= max{Re(+/1): Aisan eigenvalue of DB*(x') DB'(x?) restricted to R;z ).

A
A

Lemma 3.2 shows that except in knife edge cases, the values of these quantities
determine the stability of purified equilibria.

Lemma 3.2: Let o be a purification of x* with distribution x = Eo.
(@) (p=1) If A_<1, then the purification o is asymptotically stable; if A >1 it is unstable.
(i) (p=2) If A <1, then the purification o is asymptotically stable; if A > 1 it is unstable.

Proof: Theorems 5.5 and 6.4 of Ely and Sandholm [6] and Proposition 3.1 above tell
us that to determine the stability of o under the Bayesian dynamic (B), it is enough to
determine the stability of x under the perturbed best response dynamics (P1) and (P2).
We consider the two cases individually.

(i) By standard results, the rest point x is stable under the dynamic (P1) if the
eigenvalue of its linearization with largest real part has a real part less than zero, and it
is unstable if this real part is greater than zero. The linearization of (P1) is DB(x) - I;
since this dynamic is defined on X, we are only concerned with the properties of this
linearization on the tangent space TX = Rj. Since (1 - 1, z) is an eigenvalue/
eigenvector pair for DB(x) - I if and only if (4, z) is an eigenvalue/eigenvector pair for
DB(x), the result follows immediately from the definition of 4 .

(i) In this case, the relevant comparison is between 1 and the largest real part of an
eigenvalue of DB(x) restricted to TX = Rg1 x Rgz . But Lemma A.1 in the Appendix
implies that this largest real part is given by 4 (and also shows that the two definitions
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of 1 offered above are equivalent). This completes the proof of Lemma 3.2. B

In the next three sections, we use Lemma 3.2 to ascertain the properties of games
and type distributions that determine the local stability of purified equilibria.

4. Stability and Instability of Purified Equilibria in 2 x 2 Games

We first consider 2 x 2 games. Given the 2 x 2 payoff matrices A and B, define

0a(y) = (An—An) Y1 + (A= A 1,

0, =(An +Ap) —(Ap + Ay),

03(y) = (Byy = B1p) ¥ + (By — By) ¥, and
8; = (By; + Byy) —(By, + By).

The function &, specifies the payoff of strategy 1 relative to that of strategy 2 under
payoff matrix A given opponents’ behavior y = (y;, ¥,). The constant &), describes the
rate of change of this relative payoff as we simultaneously increase y, and decrease y,.
The function 84(y) and the constant 8, serve analogous roles for the payoff matrix B.

In the symmetric setting, &) is positive when A is a coordination game, where
increasing the use of strategy 1 makes this strategy relatively more attractive; &/, is
negative when A is a Hawk-Dove game, where the reverse is true. In the standard
setting, 6/, and &, have the same sign when (4, B) is a coordination game, with the sign
determining whether coordination is on diagonal or off-diagonal strategies; 8, and J;
have different signs in games like Matching Pennies whose unique Nash equilibrium is
in mixed strategies, with the signs determining the direction in which best responses
cycle.

To state our stability result for 2 x 2 games, we require one additional definition: let
¢": R — R denote the density of the difference d” = 6 — 67 under the type distribution
pP. Asusual, we write g for ¢' when discussing the symmetric case.

Theorem 4.1: Let o be a purification of x* with distribution x = Eo, and suppose that n' = n’
=2.

(1) (Jo =1) Ifg(64(x)) &) <1, then o is stable; if g(8,(x)) 6, > 1, ois unstable.

(i) (p=2) If g' (64(x%)) g% (85(x1)) &, 8} < 1, then o'is stable; if
g (84(x%)) & (85(x")) &, 8, > 1, ois unstable.

Proof: (i) By definition,
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C(n) =@ m+6=2m+6)=w6 6,-6,<m+m)= L g(r)dr, and
Cim) +C(m) =1.

Therefore, since B(x) = (Co F)(x) = C(Ax), we can compute that

DB(x) = DC(Ax) A = g(8,(x)) EA, where == (_11 '11]

One can easily verify that the vector (1,-1), which spans R?, is an eigenvector of
DB(x) with eigenvalue g(8,(x)) 6’ . The conclusion therefore follows from Lemma 3.2(i).

(if) Reasoning analogous to that used above shows that
DB'(x*) DB*(x') = DC'(Ax*) ADC*(B'x") B’ = ' (84(x*)) g% (83(x' ) EAEB’ .

The vector (1,-1) is an eigenvector of this matrix with eigenvalue A =
g (6,(x*)) g2 (85(x')) 8, &;. Since Ais real, A~ 1 has the same sign as Re( JA) =1, so the
conclusion follows from Lemma 3.2(ii). W

In the symmetric setting, stability of purified equilibrium depends on the product
2(8,(x)) &, which is the lone relevant eigenvalue of the derivative matrix DB(x). Here,
2(8,(x)) represents the density of the set of agents who are indifferent at the equilibrium,
while §), summarizes information about the game’s incentive structure. In the standard
setting, stability is determined by the value of A(x) = g' (6,(x*)) §*(&(x')) &, &; "

Let us focus for now on purified mixed equilibria of coordination games. In the
symmetric setting, A is a coordination game when &', is positive. Thus, Theorem 4.1(i)
tells us that a purified equilibrium of A is stable if the density g(8,(x)) is less than (&,)™",
and that it is unstable if g(8,(x)) is greater than (&,)'. In the standard setting, (4, B) is a
coordination game when &8, is positive. Since A(x) contains the product of the two
preference densities, stability in this case only requires the density of indifferent players
in one of the two populations to be small.

We illustrate the stability criterion for the symmetric case with an example.”
Suppose that a population of agents is randomly paired to play the coordination game

10
A= :

This expression is also derived in the proof of Proposition 2 of Ellison and Fudenberg [5].
The intuition behind the stability criterion for the standard case is somewhat more complicated. It is
described in our working paper, Sandholm [26].

1
12
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This game has two pure equilibria and the mixed equilibrium x* = (3, ). Without
diversity in preferences, x* is unstable under any reasonable evolutionary dynamic.

To introduce diversity in preferences, let us first suppose that g, the density of the
bias in favor of strategy 2, is uniformon [-1, 3

27 2
1  ifde[-3%,
d = 2 2
8(d) {0 otherwise.

The top part of Figure 1 presents the perturbed best response function B induced by g.
(In particular, it graphs B, as a function of x;, under the assumption that x, = 1 - x,.)
Since all agents prefer strategy 2 whenever x; < 1, B,(x,) = 0 at such states; similarly,
B,(x,) =1 whenever x, > 2. The uniformity of g implies that as x, varies from 1 to 2,
the proportion of agents who prefer strategy 1 increases linearly from 0 to 1. The slope
of El in this middle region, I§1’(x1) = 2 = g(8,(x)) 8, is the relevant eigenvalue of the
derivative matrix DB(x*) from the proof of Theorem 4.1(i).

The bottom part of Figure 1 presents the perturbed best response dynamic (P), here
described by %, = B,(x,) — x,. At states to the left of x*, %, is negative, so motion is
leftward toward x, = 0, while at states to the right of x.*, motion is rightward toward x,
= 1; the rest point x,* is therefore unstable. We can also reach this conclusion via the
eigenvalue analysis from Theorem 4.1(i): since ;%(Bl(xl)— x,) et = E{ (xf) -1=1>0,
x; is unstable. We will generalize this approach in Theorem 5.1, where we offer
sufficient conditions for instability of purified equilibria for games with many
strategies.

Next, let us perform the same exercise for a type distribution with density

z ifdel-3,-31Vl3.3]
g(d)=13 ifde(-1,3),
0 otherwise.
In this case, as x, varies from 0 to 1, the slope of B follows the sequence {0, Z, 3, Z, 0}.

As Figure 2 shows, the perturbed best response dynamic has five rest points; this time,
the rest point x;* = 7 is stable. Once again, stability can also be determined by an
analysis of eigenvalues: the slope of %, at x;* is given by ro = B/(x}) -
1=3 -1= -3 <0, implying stability. In Theorem 6.1, we extend thlS stab111ty analysis
via 11near1zat10n to games with arbitrary numbers of strategies.

While linearization can tell us whether an equilibrium is locally stable, it says

nothing about the size of a stable equilibrium’s basin of attraction. For instance, it
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follows easily from the foregoing analysis (especially Figure 2) that if g is symmetric,
satisfies g(0) < (8,)" = 1, and has support [-¢ ], then the rest point x} = 1 is stable,
with a basin of attraction contained in the interval [x;'—£,x+£]. Therefore, smaller
perturbations lead to smaller basins of attraction.

In our view, the relevant scale for payoff perturbations depends on the application
in question. Whether the perturbations are large enough relative to the likely behavior
disturbances for a purified equilibrium to be considered stable is thus contingent upon
the context at hand.

These analyses of coordination games might create the impression that introducing
the right payoff perturbations can enable one to reverse the stability of any mixed
equilibrium. In fact, while we can always create stable equilibria from unstable ones,
we cannot always do the opposite. Theorem 4.1(i) shows that under symmetric
matching, purified equilibria of Hawk-Dove games are always stable: since & is
negative in these games, the eigenvalue g(6,(x)) 8, is negative as well, implying local
stability. Similarly, Theorem 4.1(ii) implies that under standard matching, purified
equilibria are stable in all games satisfying 0/, 6, < 0: that is, whenever best responses
cycle. Theorem 6.3 offers a substantial generalization of these results: it exhibits classes
of games with arbitrary numbers of strategies in which purified equilibria are always
globally stable, regardless of the distributions of types.

5. Sufficient Conditions for Instability of Purified Equilibria

In the stability analyses of 2 x 2 games, the crucial pieces of data from the preference
distributions are the densities of indifferent agents, as it is the indifferent agents who
are the first to react to small disturbances in behavior. When each individual has only
two strategies, the relevant density is simply the value of the function g’: R — R,
evaluated at the equilibrium payoff. But when players can choose among more than
two strategies, the set of types who are currently indifferent between a given pair of
strategies forms a multidimensional subspace of R", with the relevant subspace
depending on which pair of strategies is considered. To extend our results to games
with many strategies, we must find more general ways of describing the density of
indifferent agents.

As a step in this direction, recall from Section 3.2 the definition of the choice
probability function C”: R" — X?:

Cl(n?) = ,u”[@": i € argmax nf+6,”}

jeS?
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CP(n”) is the mass of agents who find strategy i € S” optimal when the common payoff
vector is n”. Consequently, the density of indifferent agents is captured by the
sensitivity of C?(n”) to slight changes in n”. This sensitivity is captured in turn by the
derivative matrix DC”(z”): R — TX? = RY . For any small perturbation v” € R”,
the vector DC?(n”) v” € RY describes the changes in the probabilities with which the
strategies in S” are chosen when payoffs shift from #” to #” + v”: by Taylor’s formula,
C?(n? +v”)= CP(n?) + DC?(n?)v? +o(|v”‘).

We obtain scalar measures of the sensitivity of choice probabilities to changes in
payoffs by considering the eigenvalues of DC?(%”)."* Define

XD oy = Max{A: Ais an eigenvalue of DC?(”)} and

Apcr ey = min{A: Ais an eigenvalue of DC’(%”) restricted to Rgp J.

It is known that the matrix DC?(n”) is symmetric and positive semidefinite, and hence
that its eigenvalues are real and weakly positive. It follows that the maximal eigenvalue
of DCP(n”) provides a measure of the maximal sensitivity of choice probabilities to
changes in payoffs. To understand the measure of minimal sensitivity, bear in mind
that increasing each strategy’s payoff by the same amount does not alter choice
probabilities. This observation is expressed in terms of the derivative matrix as
DC?(n*)1 =0, where 1 = (1,...,,1) and 0 =(0,...,0)’. To obtain our measure of minimal
sensitivity to consequential changes in payoffs, we restrict attention to payoff changes in
the set R , which contains all vectors orthogonal to the vector 1. If y” has full support
on R, one can show that DC?(x?) is actually positive definite with respect to Rgp ,
which implies that A, ., is strictly greater than zero.

The statement of our general instability result requires a few additional definitions.
IfMe R" isa square matrix, we let S(M) = 1 (M + M’) denote its symmetric part. If
the matrix N e R is symmetric and maps R} into itself, we define

A,y =min{A: Ais an eigenvalue of N restricted to R} }.
Finally, welet ®=1- 11" € R denote the orthogonal projection of R* onto R} .

Theorem 5.1: Let o be a purification of x* € int(X) with distribution x = Ec.
() (p = 1) Suppose that A is positive definite on R. If Apcian Asony > 1 then the
purification o is a repeller: all nearby trajectories move away from o. Suppose in addition that

B For analyses of the properties of the derivative matrix DC’(n”), see Anderson, de Palma, and Thisse

[1] or Hofbauer and Sandholm [16].
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A is symmetric; then if iDC( ax) 2ono > 1, the purification o is unstable.

(i) (}7 =2) Suppose that (A, B) is a potential game (B = A) and that x* is isolated. If either
Aoctaty Aperaaty Mosono > 1 0T Aja o) Apcriast) Ropose > 1, then the purification o is
unstable.

The proof of this result is provided in the Appendix. As an aside, we note that our
analysis relies on a simple transformation that allows calculations involving linear and
bilinear operators on R to be performed using operators on the more convenient space
R"' (Lemmas A.2 and A.3). This transformation may prove useful in analyses of other
evolutionary dynamics.

In the symmetric setting (p = 1), if agents are randomly matched to play a game with
a symmetric positive definite payoff matrix, the resulting population game is a potential
game with a strictly convex potential function. Any interior Nash equilibrium is a local
minimizer of this function; since all reasonable evolutionary processes increase
potential, interior Nash equilibria are dynamically unstable under a wide range of
evolutionary dynamics.” The second statement in Theorem 5.1(i) shows that as long as
a single eigenvalue of DC(Ax) is sufficiently large—in other words, as long as choice
probabilities are sensitive to one direction of payoff change—the purification of any
interior Nash equilibrium is unstable as well.

If A is positive definite but not symmetric, interior Nash equilibria are unstable
under a more restrictive class of evolutionary dynamics.” Under this weaker restriction
on the payoff matrix, part (i) of the theorem shows that the purified equilibrium o is
unstable if all relevant eigenvalues of DC(Ax) are sufficiently large. However, this
stronger condition on DC(Ax) implies that ois a source: all solutions to (B) starting near
o leave the vicinity of o

In the standard setting (p = 2), random matching in a normal form potential game
(A, A) also generates a potential game. In this case, isolated interior equilibria are
saddle points of the population game’s potential function, and so are unstable under a
wide range of evolutionary dynamics.”® In this case, as long as there is one population
whose choice probabilities are sensitive to some change in payoffs, the purified
equilibrium is unstable.

' The potential function f for a potential game F satisfies Vf = F. Since in the present case F(x) = Ax for

a symmetric matrix A, flx) = +x - Ax; since A is positive definite, fis strictly convex. For derivations of the
remaining claims stated above, see Sandholm [24].

> See Hopkins [20].

1 In this case, the potential function for F is f{x) = x' - Ax*. The saddle point property is proved in the
Appendix (Proposition A.7). Theorem 5.1(i7) extends immediately to any normal form potential game as
defined by Monderer and Shapley [23].
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6. Sufficient Conditions for Stability of Purified Equilibria

To state our first sufficient conditions for stability, we recall a definition from matrix
analysis. The scalar A € R, is a singular value of M € R if 1 is a nonnegative square
root of an eigenvalue of MM’ € R (if k<) orof MMe R™ (ifl <k). Let 5, denote
the largest singular value of M. Our analysis relies on the following three properties of
singular values:"”

(S1) IfMe R* and Ne R™", then 3, <5, 5,

(S2) If Me R™", andif 1,, € Cis the eigenvalue of M with largest modulus,
then |):M‘ < 5.

(S3) If Me R™" is symmetric, then the singular values of M are the
absolute values of the eigenvalues of M.

Theorem 6.1 provides sufficient conditions for stability of purified equilibria.

Theorem 6.1: Let o be a purification of x* with distribution x = Ec.
@O (p=1)If IDC( ) Soas < 1, then the purification o is stable.
(i) (p=2) If A s pzy Aoc gy Sono Soso < 1, then the purification o'is stable.
Since 5,,, < 5,5,5, = 5, and Sy, < 5,5, 5, = 5, by properties (51) and (S3), the
expressions 5,,, and 5,,, in the statement of the theorem can be replaced with 5, and
5, . Of course, doing so makes our sufficient conditions for stability more demanding,.
The proof of Theorem 6.1 can be found in the Appendix. It follows immediately
from this theorem that stable purifications always exist.

Corollary 6.2: For each € > 0, every Nash equilibrium of every two player normal form game
admits a stable e-purification. In general, the size of the basin of attraction of the stable purified
equilibrium depends on the value of €.

Proof: Consider an exact purification of the form described in Section 2.4, in which
measure (x*)! agents are biased toward strategy i, and impose the additional restriction
that none of these agents’ biases towards i are less than £. Then when evaluated at the
equilibrium payoffs, DC'and DC? both equal the zero matrix. The result therefore

17

Properties (S1) and (S2) follow from Theorems 3.3.4 and 3.3.2 of Horn and Johnson [22], while
property (S3) follows easily from the definition of a singular value. Singular values are best known for

their role in the singular value decomposition: every real matrix M can be written as VIW’, where V and W

are orthogonal, the off-diagonal elements of X are zero, and the diagonal elements of X are the singular
values of A. For further discussion, see Horn and Johnson [22, Chapter 3].
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follows from Theorem 6.1. W

The sufficient conditions for stable purification in Theorem 6.1 are stated in terms of
the maximal sensitivities of choice probabilities to changes in payoffs and the maximal
singular values of the payoff matrices. Like Theorem 4.1 for 2 x 2 games, Theorem 6.1
guarantees stability whenever the maximal sensitivity of choice probabilities in the lone
population (when p = 1) or in one of the two populations (when p = 2) is sufficiently
small. Since it is possible to adjust the distributions of types to make these sensitivities
as small as desired, we conclude in Corollary 6.2 that any Nash equilibrium of any
normal form game can be purified in a stable fashion. Note that in contrast with our
instability result (Theorem 5.1), these stability results do not require the normal form
game in question to be drawn from a particular class of “well behaved” games.

Unlike Theorem 4.1 for 2 x 2 games, Theorem 6.1 does not enable us to find classes
of games whose purified equilibria are stable regardless of the distribution of types. In
the 2 x 2 case, we were able to reach such conclusions because the statistics &), € R and
0, € R capture both the magnitude and the “direction” of the effects of changes in
opponents’ behavior on own payoffs. For certain specifications of these “directions”,
our sufficient conditions for stability were satisfied by default. In the present case, the
singular values 5, € R, and 5, € R, only describe the magnitudes of payoff effects, so
distribution-free stability results cannot be obtained in a similar fashion. However, by
relying on Lyapunov functions rather than linearization as the basis for our analysis, we
can obtain the following stability result. Its proof can be found in the Appendix.

Theorem 6.3: Let o be a purification of x* with distribution x = Eo, where each type
distribution u” is smooth and has full support on R" .

(1) (p=1) If A is negative semidefinite with respect to R{, then o'is globally asymptotically
stable. In particular, these statements are true if A admits an interior ESS or an interior NSS,
or if A is symmetric zero sum (A= -A").

(71) (p=2) If (A, B) is zero sum (B = —A), then o is globally asymptotically stable.

7. An Example

As an illustration of the use of our techniques, we consider the stability of purified
equilibria in Rock-Paper-Scissors games. Consider a symmetric two player normal form
game with payoff matrix
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0 -l w
A=|lw 0 -=Il/|.
-1 w 0

Here, w (the benefit from winning a match) and I (the cost of losing) are both positive.
We distinguish three cases: w > I, which we call good RPS; w = I, which we call standard
RPS; and w < I, which we call bad RPS.

In all three cases, A has a unique symmetric Nash equilibrium, x* = (3, , 1), whose
basic stability properties are well known." State x* is an ESS in good RPS, an NSS in
standard RPS, and neither of these in bad RPS. In the first two cases, x* is globally
asymptotically stable under the best response dynamic of Gilboa and Matsui [11]; in the
last, the best response dynamic approaches a limit cycle from almost all initial
conditions.

What are the stability properties of purified versions of x*? If the type distribution u
is smooth and has full support, then Theorem 6.3 tells us that in both good RPS and
standard RPS, there is a unique purified equilibrium, an equilibrium that is globally
asymptotically stable under the Bayesian best response dynamic. In bad RPS, purified
equilibria can be either stable or unstable depending on the choice of type distribution.
To employ our results from Sections 5 and 6, we compute

) l-w 2l-w 1+2w l 2 -1 -1
PA=z|l+2w l-w -2-w|=®A® and 5(¢A)=;6w— 1 2 -1
2l-w 1+2w l—w -1 -1 2

The latter matrix has an eigenvalue of 0 for direction 1 and two eigenvalues of =% for
directions in TX = R}. Thus, A,,, = 5%, and so Theorem 5.1 tells us that a purified
equilibrium o with Ecg = x is unstable (in fact, a source) under the Bayesian best
response dynamic whenever 4, ,., > 7% . On the other hand, the matrix ®A® has two
singular values of vI*+Iw+w’ and one of 0, so Theorem 6.1 implies that o is stable
whenever 4, <1/vVP+lw+w?.

To take the analysis one step further, we focus on a convenient family of type
distributions y. Suppose that under g, the type components 6, are i.i.d. with the extreme
value distribution P(; < b) = exp(-exp(-=1""b - 7)), where 1 > 0 is a parameter called the
noise level, and y= .5772 is Euler’s constant. Then choice probabilities are given by the
logit choice rule,

8 Gee Gaunersdorfer and Hofbauer [10] and Weibull [27].
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_exp(n”'m)
Ci(n') - zkexp(n_lnk) ’

and the perturbed best response dynamic (P) becomes the well known logit dynamic,
introduced by Fudenberg and Levine [9]:

;- opm(A)
b expn(Ax),) T

To ease the interpretation of the results to come, we note that if 6, follows the extreme
value distribution defined above, then E(8) =0 and SD(6) = nn/ J6 ~1.2826 n."

By symmetry, these i.i.d. type distributions generate exact purification: for each n >
0, there is a purified equilibrium o with Ec=x*=(3, 1, 3). Since x* is a rest point of

(P), we know that C(Ax*) = x*. Using this fact, we can compute DC(Ax*):

DC(Ax*) = 7" (diag(C(Ax*)) - C(Ax*)C(Ax*))

(2 -1
I R S
I _

-1 -1 2

This matrix has an eigenvalue of 0 for direction 1 and two eigenvalues of % for
directions in R}. Therefore, Theorem 5.1 ensures that the purification ¢ is unstable if
the noise level 77 is less than =%, while Theorem 6.1 ensures that it is stable if 77 exceeds
WP+lw+w® .

Since we have specified the type distribution explicitly, we can check the stability of
the purification directly using Lemma 3.2. Applying the analysis of the matrix DC(Ax*)
above, we find that

DC(Ax)A = DC(Ax")®A = LA,

This matrix has an eigenvalue of 0 for direction 1 and eigenvalues of
%((l—w)ii\/g(H w)) for directions in R}. Therefore, Lemma 3.2 tells us that the
purification o is stable if 7> =% and is unstable if n < £2. We thus conclude that while
the stability bound we obtained using Theorem 6.1 is loose, the instability bound
obtained from Theorem 5.1 is tight.

We illustrate these results in Figures 3 and 4, which present phase diagrams of the

19

See Anderson, de Palma, and Thisse [1] and Hofbauer and Sandholm [16].
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logit dynamic in bad RPS with w =1 and I = 2. In Figure 3, we set the noise level to 7 =
.1; evidently, the purified equilibrium is unstable, with all solution trajectories other
than the one at x* appearing to converge to a limit cycle. In Figure 4, we raise the noise
level to 1 = .2; in this case, the purified equilibrium becomes a global attractor. It is
noteworthy that in this example, perturbations with a standard deviation as low as
1/ 676 = .2138 are enough to create a stable purified equilibrium.

Appendix

We begin with a preliminary result used to prove Lemma 3.2(ii) (with Q = DB'(x?)
and R = DB?*(x')). Similar results can be found, for example, in Hofbauer and Sigmund
[19, Section 17.4].

Lemma A.1 Consider the matrix

P= 0 Q € R(nl+n2)x(nl+n2)
R 0 ’

where Q has range Rgl and R has range Rg2 . If Ais an eigenvalue of P restricted to Rgl X Rg2 ,
then A* is an eigenvalue of QR restricted to Rgl , and is also an eigenvalue of RQ restricted to
R(')'2 . If A= 0, each converse implication also holds. Hence,

max{Re(A): A is an eigenvalue of P restricted to R x R” )
= max{Re( \/I ): Ais an eigenvalue of QR restricted to R(’)'1 }
= max{Re( N ): Ais an eigenvalue of RQ restricted to Rgz }.

Proof. To prove the first claim, suppose that Px = Ax for some x € C" x Cg2 and
some A € C. Evaluating this equality yields Qx* = Ax' and Rx' = 2x*. Hence, QRx' =
QAx* = A*x' and RQx*> = RAx' = A*x*. To prove the first converse implication,
suppose that QRx' = A2 x' for some x' € C and some A e C - {0}. If we set x* =
A'Rx' € ng, then Rx' = Ax* and Qx* = A7QRx' = A (A% x') = Ax', so Px = Ax. The
proof for the claim concerning RQ is similar.

We now use the first set of claims to establish the two equalities. If all relevant
eigenvalues of P all have zero real part, then all relevant eigenvalues of QR and RQ are
real and nonpositive, so the equalities follow from the first set of claims.

On the other hand, suppose there exists a relevant eigenvalue of P with nonzero real
part. Then there exists one, say 1%, with strictly positive real part: if A= 0 with Re(4) <0
is a relevant eigenvalue of P, then A? is a relevant eigenvalue of QR, and hence -1 is
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Figure 3: The logit(.1) dynamic in bad RPS

Figure 4: The logit(.2) dynamic in bad RPS



also a relevant eigenvalue of P (since (-A)* = A? is an eigenvalue of QR). Furthermore,
every eigenvalue of QR and RQ is either the square of an eigenvalue of P or is zero.
Since Re(A*) > 0, a zero eigenvalue cannot determine max Re( Ja ) for QR or RQ, and so
the equalities once again hold. l

We now introduce a transformation that enables us to convert analyses of operators
on R} into analyses of operators on the more convenient space R"'. Define the matrix
Re R™ by

Jn+n(n-2) Jn-n n-n _ 1
n(n-1) n(n-1) n(n-1) Jn
n-n :
n(n-1)
— n-n
R= n(n-1)
n-n Jn-n Jn+n(n-2) 1
n(n-1) n{n-1) n(n-1) Jn
Jn Jn

R rotates span{1, e,} about its orthogonal complement by an angle of cos™ (7]_;). (Here e,
is the nth standard basis vector in R".) It is easy to verify that R1 = v e, and that R R;
= R}, where R} ={y eR": y,=0}. Since R is a rotation matrix, it is orthogonal, and
hence R’ = R™. (For more on rotation matrices, see Friedberg, Insel, and Spence [7,
Section 6.10].)

Next, let ] € R"™" be defined by ] = (I 0). Premultiplication of y € R" by ] drops
y's last component. It is easy to see that ]’] is the orthogonal projection of R" onto R},
and that JJ’ =Iis the identity on R".

Finally, define the matrix Z € R"™" by Z = JR, so that Z is the matrix R with its
final row removed. The following lemmas describe the properties of Z that make it
useful in linearization analysis.

Lemma A.2: (i) Z defines a bijective map from R} to R"™.

(it) Z’Z = R']’JR = @, the orthogonal projection of R" onto Ry .

(iif) ZZ' = JRR’]" = J]’ =1, the identity on R"".
Lemma A.3: Suppose that M € R™" maps R} into itself, and let x € R} (or C). Then (2, x)
is an eigenvalue [ eigenvector pair for M if and only if (4, Zx) is an eigenvalue [ eigenvector pair

for ZMZ' .

Proofs: The claims in Lemma A.2 are geometrically obvious and easy to verify by
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direct calculation; we use them to prove Lemma A.3. First, observe that if Mx = Ax for
some x € R}, then M®x = Adx, which implies that ZM ®x = AZ®Px; then statements (ii)
and (iii) above allow us to conclude that ZMZ'Zx = AZZ'Zx = AZx. Conversely, if
ZMZ'Zx = AZx for some x € R;, then statement (i) tells us that ZMx = AZx. Since Mx
and x are both in Rjj, we conclude from statement (/) that Mx = Ax. B

In addition to the definitions of maximal and minimal eigenvalues introduced in the
text, the analyses to follow utilize the following definitions. When the matrices N €
R™ (withk=norn-1)and Qe R""™ are symmetric, we let

IN =max{A: Ais an eigenvalue of N} and
A, =min{A: 1is an eigenvalue of Q}.

The Proof of Theorem 5.1(i)

To begin the proof of the first claim of Theorem 5.1(i), we establish that if x = Ecis a
source of (P) = (AB) (i.e., that if all solutions of (P) starting at some x, = x with |x - x0| <
¢ permanently leave the e-neighborhood of x), then o is a source of (B). To see this,
observe that if {g;} is a solution to (B) with "0'0 —0'" < & then it follows from Ely and
Sandholm [6, Lemma 2.1] that

|Es, — x| = |[Ec, — E(B(x))| = |Eo, —Eo| < |0, - o] <&

Hence, the solution to (AB) starting from x, = Eog, permanently leaves the &
neighborhood of x. By Ely and Sandholm [6, Theorem 5.2], this solution is actually the
trajectory {Egy}, so using Ely and Sandholm [6, Lemma 2.1] once again, we find that

lo, - B(x)| = |Eo, - E(B(x))| =|Eo, - x].

Thus, {0} eventually leaves the eneighborhood of the rest point B(x) forever,
establishing our claim.

To show that x is a source of (P) = (AB), it is enough by Lemma 3.2(i) to show that if
Apcian) Asoay > 1, then all eigenvalues of the matrix DB(x) = DC(Ax)A with respect to
directions in R; have real part greater than 1. If DC(Ax) is not positive definite on R}
(i.e, if it is only positive semidefinite on Rj), then Lemma A.3 and the Rayleigh-Ritz
Theorem (Horn and Johnson [21, Thoerem 4.2.2] imply that A,.,, = 0, so the
antecedent inequality does not hold. Our conclusion therefore follows from the
following lemma, which builds on results of Hines [13], Hofbauer and Sigmund [19,
Section 16.4], and Hopkins [20].
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Lemma A.4: Suppose that D € R™" is symmetric, satisfies D1 = 0, is positive definite on Ry,
and maps Ry into itself. In addition, suppose that A € R™" is positive definite with respect to
Ry. Let A, be the smallest real part of an eigenvalue of DA restricted to Ry. Then Ay, =

&D &S((DA) *

Proof: Suppose that
(1) DA(v + iw) = (a+ if)(v + iw)

for some v, we Rj and @, B € R. Since D is positive definite on Rj and maps R; to
itself, it is one-to-one on Rj, so there exist y, z € R} such that Dy = v and Dz = w.
Moreover, since D1 = 0 and since @ projects R" onto Rj, we can rewrite equation (1) as

D®@A(v + iw) = (o + 1f)(v + iw) = (a + if)D(y + iz).
Since D is one-to-one on Ry, it follows that
PA(v + iw) = (o + if)(y + iz).
Since D is symmetric, premultiplying by (v —iw)" yields
(v—iw) @AW + iw) = (a + if) (v —iw) (y +iz) = (a+ if)(y +iz) D(y - iz).
If we equate the real parts of the previous expression and collect terms, we obtain
(2) v’ @AY + w’ PAw = o y’ Dy +2 Dz)=ov' D v+ w’ D w),
where D' inverts D on R} . Sinceve R} and since

S(ZPAZ') = HZPAZ + ZA'DPZ') = Z(3(PA+ A'D))Z" = ZS(PA)Z’,
Lemma A.2, the Rayleigh-Ritz Theorem, and Lemma A.3 imply that

(3) v’ DAV = v’ DDADY

v 2 (ZADPZ )Zv

v Z' S(ZADPZ' )Zv
v Z' (Z S(A®)Z')Zv
Azsomz V' 2 Zv

= Agiony V' DV

’
= .A_‘s(am) v

o

Y%
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At the same time, if we let /:LD_l denote the largest eigenvalue of D™ restricted to R},
then A, = ()", so applying the Rayleigh-Ritz Theorem again yields

(4) v Dl'v< aio_, v'v=(A,)" v'o.
Combining expressions (2), (3), and (4), we find that

Asion (V0 + w'w) < v PAV + w’ PAwW
=o{v' D"'v+ w D'w)

<o(A,) (Vo + ww).

We therefore conclude that a> 4, A;,,,, and hence that 1,, = 4, A4, - @

To prove the second claim in Theorem 5.1(i), suppose that A is symmetric and is
positive definite on Rj. Then the claim immediately follows from Lemma 3.2(i) and
Lemma A.5 below. The lemma builds on a well known fact from matrix analysis: if D
e R™ is symmetric and A € R™" is symmetric positive definite, then DA and D have

the same inertia—that is, the same numbers of positive, negative, and zero eigenvalues
(see Horn and Johnson [21, Theorem 7.6.3]).

Lemma A.5: Suppose that D € R™" is symmetric, satisfies D1 = 0, and maps R; into itself,
and suppose that A € R™" is symmetric and that it is positive definite on Ry. Then the
eigenvalues of DA with respect to R” are real, and the largest one, A, is at least Ay Ay -

Proof: The eigenvalues of DA with respect to R; are the same as the eigenvalues of
DA® with respect to Rj; by Lemma A.3, these in turn are equal to the eigenvalues of
ZDA®Z’ with respect to R"™'. Since D1 = 0, we can use Lemma A.2 to express this last
product as

ZDA®Z’ = ZDODPADZ' = ZDZ'ZPADZ’ = DA,

where D = ZDZ' e R“™"V js symmetric and A = ZOADZ e ROV jg
symmetric positive definite.
Since A has a symmetric positive definite square root A'?, DA is similar to

Al/zﬁAA—l/Z _ Al/zﬁAl/Z

Therefore, Ostrowski’s Theorem (Horn and Johnson [21, Theorem 4.5.9]), a quantitative
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version of Sylvester’s Law of Inertia, implies that the eigenvalues of DA are real, and
that 1,, = 45 4;, where A4, is the largest eigenvalue of DA. Since we established
earlier that the eigenvalues of DA restricted to R; are the same as the eigenvalues of

DA, and since 1, = Ay and A,,, = A; by Lemma A.3, we are able to conclude that
Aoa 2 Ap Aope- A

This completes the proof of Theorem 5.1(i). W

The Proof of Theorem 5.1(ii)

To establish the first sufficient condition stated in part (ii) of the theorem, it is
enough by Lemma 3.2(ii) to show that if A, ., ZD 2y Lonono Strictly exceeds 1, then
DB'(x*) DB*(x") = DC'(Ax*) ADC?*(A’x") A’ has a real eigenvalue that is strictly greater
than one.

If DC'(Ax?) is only positive semidefinite on R}, then Lemma A.3 and the Rayleigh-
Ritz Theorem imply that A,q .2, =0, and so that A, 4., ;{_'DCZ () Lonoae = 0; We may
therefore assume that DC'(Ax?) is positive definite on R} . In addition, since (4, A) has
an isolated interior equilibrium, A must be square (i.e, n'and n*> must be equal—see
Hofbauer and Sigmund [19, Section 17.4]); it must also be true that when z € R] is
nonzero, Az is not a multiple of 1, or equivalently, @Az = 0 (otherwise, if x* is an interior
equilibrium, then so is x* + &). Therefore, @A defines a bijective map from R} to itself.

In light of these observations, the sufficiency of the first inequality in part (ii) of the
theorem is a consequence of the following lemma, which builds on results of Hofbauer
and Hopkins [15]. The other sufficient condition is obtained by applying this result to
the product DB*(x') DB'(x?).

Lemma A.6: Let D' € R™" and D* € R™" be symmetric, map R} into itself, and map the
vector 1 to the origin, and suppose that D' is positive definite on R} and that D’ is positive
semidefinite on R . In addition, suppose that A € R™" is such that @A is a bijective map from
R} to itself. Then the eigenvalues of D' AD* A’ with respect to R} are real, and the largest
one, )_“D‘ADZA" is at least A )_»Dz Aosono:

Proof: The eigenvalues of D'AD? A’ with respect to R] are the same as the
eigenvalues of D' AD? A’ @ with respect to R}; by Lemma A.3, these in turn are equal
to the eigenvalues of ZD'AD?A’®Z’ with respect to R""'. Now since D'1 =0 and D*1
=0, and since the range of D? is contained in R}, we can write

ZD'AD’A'®Z’ = ZD'@DAPD*PA'®PZ’
= ZD'Z’Z®AZ' ZD* 7' ZA'®Z’

28—



=D'AD* A,

where D' = ZD' Z’ is symmetric positive definite on R"", D? = ZD? Z’ is symmetric
positive semidefinite on R"", and A = ZOAZ’ has full rank on R".

Since A has full rank on R"', A D* A’ is congruent to D?. Hence, Ostrowski’s
Theorem implies that the eigenvalues of A D* A’ are real and that

A a2 }_'f)l &A/‘V’

AD*A
Moreover, D' A D* A’ is similar to
(151)-1/2 Dl A 152 A/ (ﬁl)uz _ (D1)1/2 A 152 A, (DI)I/Z‘

Therefore, employing Ostrowski’s Theorem once again, we find that the eigenvalues of

D' A D* A’ are real and that the maximal eigenvalue 2 satisfies

D'AD? A

A 24@1)«

D'AD?A’ AD? A’

2 Ay Zf)z Aij

We established above that the eigenvalues of D' AD? A’ with respect to R! are the
same as the eigenvalues of D' A D* A’. In addition, Lemma A.3 implies that A5 = 4

—_ Dl ’
that lﬁz = ),Dz , and, since

AA = ZOAZ'ZADZ = ZOADA'DZ,

that A;; = Apsone- We therefore conclude that the eigenvalues of D'AD? A’ are real
and that A4 o2 Ay A, A Qa

D' AD? D? ZPAPA'D "

This completes the proof of Theorem 5.1(i7). W

We note as an aside that the last terms of the two sufficient conditions from Theorem
5.1(1), Apppse aNd Ayu0.0, are equal. To see this, observe that the eigenvalues of
DPAPA’ @ with respect to R equal the eigenvalues of ZOAP A’ @7’ = AA; AA s
similar to A’ A (Horn and Johnson [21, Theorem 1.3.20]), which has the same
eigenvalues as PA’ PAP with respect toR;. Since AA s symmetric positive
semidefinite (Horn and Johnson [21, Observation 7.1.6]), this argument also shows that
Aonono aNd 44,040 are nonnegative.

The following result on the instability of interior equilibria of potential games was
noted in connection with Theorem 5.1(ii).
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Proposition A.7: Let (A, A) be a normal form potential game, let F be the population game that
obtains when two unit mass populations are randomly matched to play (A, A), and let f(x) =
x'-Ax® be the potential function for F. If x* is an isolated interior Nash equilibrium of F (and
hence of (A, A)), then x* is a saddle point of f with respect to directions in TX.

Proof: Proposition 3.1 of Sandholm [24] tells us that any interior Nash equilibrium x*
of F is a critical point of £, in the sense that Vf (x*) is orthogonal to TX = R x R . To
show that x* is a saddle point of f, it is enough to show that the eigenvalues of V*f(x)
with respect to TX come in pairs of the form i\/l_,. with 4, > 0.

As we noted in the proof of Theorem 5.1(ii), that (A, A) admits an isolated interior
equilibrium implies that A is square and has full rank on Rj (®Az = 0 for all z € R}).
Now observe that

V2f(x) = DF(x) = (2 ’g] :

It is easy to show that the eigenvalues of this matrix with respect to Rj x R{ are the
same as the eigenvalues of

0 ZAZ'
ZA'Z 0

with respect to R"' x R""' (cf. Lemma A.3), and that the eigenvalues of the latter
matrix are the positive and negative square roots of the eigenvalues of the symmetric
matrix ZAZ'ZA’ Z' = ZADPP A’ Z' (cf. Lemma A.1). The full rank condition on A
implies that the rank of ZA® is n — 1, and hence that the rank of ZA®P' A’ Z" isn -1
(Horn and Johnson [21, Observation 7.1.6]). Therefore, all n — 1 eigenvalues of
ZA®PP' A’ Z' are strictly positive. Since the relevant eigenvalues of V?f(x) are the
positive and negative square roots of these numbers, the proof is complete. W

We conclude by proving our global stability results.

The Proof of Theorem 6.1

(i) By Lemma 3.2(j), it is enough to show that the eigenvalue of DB(x) = DC(Ax) A
with respect to R of largest modulus, or, equivalently, the eigenvalue of DB(x) @ with
largest modulus, has modulus less than one, since in this case all eigenvalues of
DB(x) @ have real parts with absolute value less than one. But since the matrix DC(Ax)
maps the vector 1 to the origin (so that DC(Ax) = DC(Ax)®) and is symmetric positive
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semidefinite, properties (51)-(S3) imply that

I/l <

pBe| = Spbme — Spcianae = Spc(axiese = Spciax) Seas = Apciar) Sose < 1-

(ii) By Lemma 3.2(ii), it is enough to show that the eigenvalue of DB'(x*) DB*(x') =
DC'(Ax*) ADC*(B’x") B’ with respect to Rgl of largest modulus has modulus less than
one: in this case, the square root of this eigenvalue and of all other eigenvalues have
modulus less than one, and so the real parts of these square roots have absolute value
less than one. Since we are only concerned with eigenvalues with respect to R , and
since the range of DB*(x') is Rgz, it is sufficient to show that the eigenvalue of
DB'(x*) ®DB*(x') @ with largest modulus has modulus less than one. Reasoning as
above, we find that

_ . <5 . -
DB' (x})®DB*(x" )| ~ SDB‘(x2)¢DB2(x‘)¢

5 DC'(Ax?)A® DC?(B’x' )B'®
= g 1 2 2 71 ’
DC'(Ax?)®Ad DC?(B'x' )dB'®

< sDC‘(sz) So40 SDCZ(B'x') Sopo
= ADC‘(AxZ) ADCZ(B'xl) S04 Soso
<1l. N

The Proof of Theorem 6.3

Let A or (A, B) be a normal form game from any of the classes mentioned in the
statement of the theorem. Then random matching in this game generates a population
game F whose derivative matrices DF(x) are negative semidefinite with respect to TX.
In other words, F is a stable game (Hofbauer and Sandholm [18]).

Using a Lyapunov function argument, Hofbauer and Sandholm [17, Theorem 3.1]
show that the dynamic (P) admits a globally asymptotically stable rest point whenever
the distributions u? are smooth and have full support and the game F is stable.
Theorem 6.6 of Ely and Sandholm [6] shows that aggregate behavior x is globally
asymptotically stable under (P) = (AB) if and only if the Bayesian strategy B(x) is
globally asymptotically stable under (B). Together, these facts establish our result. Bl
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