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1.  Introduction 
 
 Deterministic evolutionary dynamics for games first appeared in the mathematical 
biology literature, where Taylor and Jonker (1978) introduced the replicator dynamic to 
provide an explicitly dynamic foundation for the static evolutionary stability concept of 
Maynard Smith and Price (1973) (see the entry on “Evolutionarily Stable Strategies” in 
this dictionary).  But one can find precursors to this approach in the beginnings of game 
theory:  Brown and von Neumann (1950) introduced differential equations as a tool for 
computing equilibria of zero-sum games.  In fact, the replicator dynamic appeared in 
the mathematical biology literature long before game theory itself:  while Maynard 
Smith and Price (1973) and Taylor and Jonker (1978) studied game theoretic models of 
animal conflict, the replicator equation is equivalent to much older models from 
population ecology and population genetics.  These connections are explained by 
Schuster and Sigmund (1983), who also introduced the name “replicator dynamic”, 
borrowing the term “replicator” from Dawkins (1982). 
 In economics, the initial phase of research on deterministic evolutionary dynamics in 
the late 1980s and early 1990s focused on populations of agents who are randomly 
matched to play normal form games, with evolution described by the replicator 
dynamic or other closely related dynamics.  The motivation behind the dynamics 
continued to be essentially biological:  individual agents are preprogrammed to play 
specific strategies, and the dynamics themselves are driven by differences in birth and 
death rates.  Since that time, the purview of the literature has broadened considerably, 
allowing more general sorts of large population interactions, and admitting dynamics 
derived from explicit models of active myopic decision making. 
 This article provides a brief overview of deterministic evolutionary dynamics in 
game theory.  More detailed treatments of topics introduced here can be found in the 
recent survey article by Hofbauer and Sigmund (2003), and in books by Maynard Smith 
(1982), Hofbauer and Sigmund (1988, 1998), Weibull (1995), Vega-Redondo (1996), 
Samuelson (1997), Fudenberg and Levine (1998), Cressman (2003), and Sandholm 
(2006). 
                                                
1  I thank John Nachbar for helpful comments.  Financial support from NSF Grant SES-0092145 is 
gratefully acknowledged. 
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2.  Population Games 
 
 Population games provide a general model of strategic interactions among large 
numbers of anonymous agents.  For simplicity, we focus on games played by a single 
population, in which agents are not differentiated by roles; allowing for multiple 
populations is mostly a matter of introducing more elaborate notation. 
   In a one-population game, each agent from a unit-mass population chooses a 
strategy from the finite set S = {1, … , n}, with typical elements i and j.  The distribution 
of strategy choices at a given moment in time is described by a population state x  X = {x 

   R+

n :  
 

xii S
 = 1}.  The payoff to strategy i, denoted Fi: X  R, is a continuous function 

of the population state; we use the notation F: X    R
n  to refer to all strategies’ payoffs 

at once.  By taking the set of strategies S as fixed, we can refer to F itself as a population 
game. 
 The simplest example of a population game is the most commonly studied one: 
random matching to play a symmetric normal form game A    R

n n , where Aij is the 
payoff obtained by an agent choosing strategy i when his opponent chooses strategy j.  
When the population state is x  X, the expected payoff to strategy i is simply the 
weighted average of the elements of the ith row of the payoff matrix:  Fi(x) = 

 
Aijxjj S

 
= (Ax)i.  Thus, the population game generated by random matching in A is the linear 
population game F(x) = Ax. 
 Many models of strategic interactions in large populations that arise in applications 
do not take this simple linear form.  Consider, for example, in models of highway 
congestion, payoff functions are convex:  increases in traffic when traffic levels are low 
have virtually no effect on delays, while increases in traffic when traffic levels are high 
increase delays substantially (see Beckmann, McGuire and Winsten (1956) and 
Sandholm (2001)).  Happily, allowing nonlinear payoffs extends the range of possible 
applications of population games without making evolutionary dynamics especially 
more difficult to analyze, since the dynamics themselves are nonlinear even when the 
underlying payoffs are not. 
 
3.  Foundations of Evolutionary Dynamics 
 
 Formally, an evolutionary dynamic is a map that assigns to each population game F a 
differential equation   x  =   V

F (x)  on the state space X.  While one can define evolutionary 
dynamics directly, it is preferable to derive them from explicit models of myopic 
individual choice.   
 We can accomplish this by introducing the notion of a revision protocol :   R

n   X  

  R+

n n .  Given a payoff vector F(x) and a population state x, the revision protocol specifies 
for each pair of strategies i and j a nonnegative number ij(F(x), x), representing the rate 
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at which agents currently playing strategy i switch to strategy j. 
 A given revision protocol can admit a variety of interpretations.  For one all-purpose 
interpretation, suppose each agent is equipped with an exponential alarm clock.  When 
the clock belonging to an agent playing strategy i rings, he selects a strategy j  S at 
random, and then switches to this strategy with probability proportional to ij(F(x), x).  
While this interpretation is always available, others may be simpler in certain instances.  
For example, if the revision protocol is of the imitative form ij = 

  
xj

ˆ
ij , we can 

incorporate the xj term into our story by supposing that the revising agent selects his 
candidate strategy j not by drawing a strategy at random, but by drawing an opponent at 
random and observing this opponent’s strategy.  Revision protocols that are most 
consistent with the evolutionary paradigm only require agents to possess limited 
information:  for example, a revising agent might only know the current payoffs of his 
own strategy i and his candidate strategy j. 
 A population game F and a revision protocol  together generate an ordinary 
differential equation   x  =   V

F (x)  on the state space X.  This equation, which captures the 
population’s expected motion under F and , is known as the mean dynamic or mean field 
for F and : 
 
(M)   

  xi  =   Vi
F (x)  = 

  
xj ji(F(x),x)

j S

xi ij(F(x),x)
j S

. 

 
 The form of the mean dynamic is easy to explain.  The first term describes the 
“inflow” into strategy i from other strategies; it is obtained by multiplying the mass of 
agents playing each strategy j by the rate at which such agents switch to strategy i, and 
then summing over j.  Similarly, the second term describes the “outflow” from strategy i 
to other strategies.  The difference between these terms is the net rate of change in the 
use of strategy i. 
 To obtain a formal link between the mean dynamic (M) and our model of individual 
choice, imagine that the population game F is not played by a continuous mass of 
agents, but rather by a large, finite population with N members.  Then the model 
described above defines a Markov process   {Xt

N }  on a fine but discrete grid in the state 
space X.  The foundations for deterministic evolutionary dynamics are provided by the 
Finite Horizon Deterministic Approximation Theorem:  Fix a time horizon T < .  Then the 
behavior of the stochastic process   {Xt

N }  through time T is approximated by a solution of 
the mean dynamic (M); the approximation is uniformly good with probability close to 
one once the population size N is large enough.  (For a formal statement of this result, 
see Benaïm and Weibull (2003).) 
 In cases where one is interested in phenomena that occur over very long time 
horizons, it may be more appropriate to consider the infinite horizon behavior of the 
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stochastic process   {Xt
N } .  Over this infinite time horizon, the deterministic 

approximation fails, as a correct analysis must explicitly account for the stochastic 
nature of the evolutionary process.  For more on the distinction between the two time 
scales, see Benaïm and Weibull (2003), as well as the entry on “Stochastic Adaptive 
Dynamics” in this dictionary. 
 
4.  Examples and Families of Evolutionary Dynamics 
 
 We now describe revision protocols that generate some of the most commonly 
studied evolutionary dynamics.  In the table below,   F(x)  = 

  
xiFi(x)

i S
 represents the 

population’s average payoff at state x, and   B
F (x)  = argmaxy X   y F(x)  is the best 

response correspondence for the game F. 
 

Revision protocol Evolutionary Dynamic Name Origin 

ij = xj (K – Fi), or 

ij = xj (K + Fj), or 

ij = xj [Fj – Fi]+ 

   xi = xi(Fi(x) F(x))  replicator Taylor and 
Jonker (1978) 

ij = [Fj –  F ]+    xi = [Fi(x) F(x)]
+
  

  
xi [Fj(x) F(x)]

+j S
 

Brown-von 
Neumann-

Nash  (BNN) 

Brown and von 
Neumann 

(1950) 

ij = [Fj – Fi]+    
xi = xj[Fi(x) Fj(x)]

+j S
 

  
xi [Fi(x) Fj(x)]

+j S
 

pairwise 
difference 

(PD) 
Smith (1984) 

ij = 
  

exp( 1Fj )

exp( 1Fk )
k S

 
   
xi =

exp( 1Fi(x))
exp( 1Fk(x))

k S

xi  logit Fudenberg and 
Levine (1998) 

ij =   Bi
F (x)  

   x = Bi
F (x) xi  best response Gilboa and 

Matsui (1991) 

 
 A common critique of evolutionary analysis of games is that the choice of a specific 
revision protocol, and hence the evolutionary analysis that follows, is necessarily 
arbitrary.  There is surely some truth to this criticism:  to the extent that one’s analysis is 
sensitive to the fine details of the choice of protocol, the conclusions of the analysis are 
cast into doubt.  But much of the force of this critique is dispelled by this important 
observation:  evolutionary dynamics based on qualitatively similar revision protocols lead to 
qualitatively similar aggregate behavior.  We call a collection of dynamics generated by 
similar revision protocols a family of evolutionary dynamics. 
 To take one example, many properties that hold for the replicator dynamic also hold 
for dynamics based on revision protocols of the form ij = xj   

ˆ
ij  where 

  
ˆ

ij  satisfies   
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sgn ( ˆ

ki
ˆ

ik ) ( ˆ
kj

ˆ
jk )( )  = sgn(Fi – Fj)  for all k  S. 

 
(In words:  if i earns a higher payoff than j, then the net conditional switch rate from k to 
i is higher than that from k to j for all k  S.)  For reasons described in the previous 
section, dynamics generated in this way are called imitative dynamics.  (See Björnerstedt 
and Weibull (1996) for a related formulation.)  For another example, most properties of 
the PD dynamic remain true for dynamics are based on protocols of the form ij = (Fi – 
Fj), where : R  R+ satisfies sign-preservation: 
 
   sgn( (d)) = sgn([d]+). 
 
Dynamics in this family are called pairwise comparison dynamics.  For more on these and 
other families of dynamics, see Sandholm (2006, Ch. 5). 
 
5.  Rest Points and Local Stability 
 
 Having introduced families of evolutionary dynamics, we now turn to questions of 
prediction:  if agents playing game F follow the revision protocol  (or, more broadly, a 
revision protocol from a given family), what predictions can we make about how they 
will play the game?  To what extent do these predictions accord with those provided by 
traditional game theory? 
 A natural first question to ask concerns the relationship between the rest points of an 
evolutionary dynamic  V

F  and the Nash equilibria of the underlying game F.  In fact, 
one can prove for a very wide range of evolutionary dynamics that if a state x*  X is a 
Nash equilibrium (that is, if x  B(x)), then x* is a rest point as well. 
 One way to show that NE(F)    RP(V F )  is to first establish a monotonicity property 
for  V

F :  that is, a property that relates strategies’ growth rates under  V
F  with their 

payoffs in the underlying game (see, e.g., Nachbar (1990), Friedman (1991), and Weibull 
(1995)).  The most general such property, first studied by Friedman (1991) and Swinkels 
(1993), we call positive correlation: 
 
(PC)  If x    RP(V F ) , then   F(x) V F (x)  > 0. 
 
Property (PC) is equivalent to requiring a positive correlation between strategies’ 
growth rates   Vi

F (x)  and payoffs Fi(x) (where the underlying probability measure is the 
uniform measure on the strategy set S).  This property is satisfied by the first three 
dynamics in the table above, and modifications of it hold for the remaining two as well.  
Moreover, it is not difficult to show that if  V

F  satisfies (PC), then all Nash equilibria of F 
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are rest points of  V
F :  that is, NE(F)    RP(V F ) , as desired (see Sandholm (2006, Ch. 5)). 

 In many cases, one can also prove that every rest point of  V
F  is a Nash equilibrium 

of F, and hence that NE(F) equals   RP(V F ) .  In fact, versions of this statement are true for 
all of the dynamics introduced above, with the notable exception of the replicator 
dynamic and other imitative dynamics.  The reason for this failure is easy to see:  when 
revisions are based on imitation, unused strategies, even ones that are optimal, are 
never chosen.  On the other hand, if we introduce a small number of agents playing the 
unused optimal strategy, then these agents will be imitated.  Developing this logic, 
Bomze (1986) and Nachbar (1990) show that under many imitative dynamics, every 
Lyapunov stable rest point is a Nash equilibrium. 
 As we noted at the onset, the original motivation for the replicator dynamic was to 
provide a foundation for Maynard Smith and Price’s (1973) notion of an evolutionarily 
stable strategy.  Hofbauer, Schuster, and Sigmund (1979) and Zeeman (1980) show that 
an ESS is asymptotically stable under the replicator dynamic, but that an asymptotically 
state need not be an ESS.   
 More generally, when is a Nash equilibrium a dynamically stable rest point, and 
under which dynamics?  Under differentiable dynamics, stability of isolated equilibria 
can often be determined by linearizing the dynamic around the equilibrium.  In many 
cases, the question of the stability of the rest point x* reduces to a question of the 
negativity of certain eigenvalues of the Jacobian matrix DF(x*) of the payoff vector field.  
In nondifferentiable cases, and in cases where the equilibria in question form a 
connected component, stability can sometimes be established using another standard 
approach:  the construction of suitable Lyapunov functions.  For an overview of work in 
these directions, see Sandholm (2006, Ch. 6). 
 In the context of random matching in normal form games, it is natural to ask 
whether an equilibrium that is stable under an evolutionary dynamic also satisfies the 
restrictions proposed in the equilibrium refinements literature (see the entry on 
“Refinements of Nash Equilibrium” in this dictionary).  Swinkels (1993) and Demichelis 
and Ritzberger (2003) show that this is true in great generality under even the most 
demanding refinements:  in particular, any component of rest points that is 
asymptotically stable under a dynamic that respects condition (PC) contains a 
strategically stable set in the sense of Kohlberg and Mertens (1986).  While proving this 
result is difficult, the idea behind the result is simple.  If a component is asymptotically 
stable under an evolutionary dynamic, then this dynamic stability ought not to be 
affected by slight perturbations of the payoffs of the game.  A fortiori, the existence of the 
component ought not to be affected by the payoff perturbations either.  But this 
preservation of existence is precisely what strategic stability demands.   
 This argument also shows that asymptotic stability under evolutionary dynamics is 
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a qualitatively stronger requirement than strategic stability:  while strategic stability 
requires equilibria not to vanish after payoff perturbations, it does not demand that 
they be attracting under a disequilibrium adjustment process.  For example, while all 
Nash equilibria of simple coordination games are strategically stable, only the pure 
Nash equilibria are stable under evolutionary dynamics. 
 Demichelis and Ritzberger (2003) establish their results using tools from index 
theory.  Given an evolutionary dynamic  V

F  for a game F, one can assign each 
component of rest points an integer, called the index, that is determined by the behavior 
of the dynamic in a neighborhood of the rest point; for instance, regular, stable rest 
points are assigned an index of 1.  The set of all indices for the dynamic  V

F  is 
constrained by the Poincaré-Hopf Theorem, which tells us that the sum of the indices of 
the equilibrium components of  V

F  must equal one.  As a consequence of this deep 
topological result, one can sometimes determine the local stability of one component of 
rest points by evaluating the local stability of the others. 
 
6.  Global Convergence:  Positive and Negative Results 
 
 To provide the most satisfying evolutionary justification for the prediction of Nash 
equilibrium play, it is not enough to link the rest points of a dynamic and the Nash 
equilibria of the underlying game, or to prove local stability results.  Rather, one must 
establish convergence to Nash equilibrium from arbitrary initial conditions.   
 One way to proceed is to focus on a class of games defined by some noteworthy 
payoff structure, and then to ask whether global convergence can be established for 
games in this class under certain families of evolutionary dynamics.  As it turns out, 
general global convergence results can be proved for a number of classes of games.  
Among these classes are potential games, which include common interest games, 
congestion games, and games generated by externality pricing schemes; stable games, 
which include zero-sum games, games with an interior ESS, and (perturbed) concave 
potential games; and supermodular games, which include models of Bertrand oligopoly, 
arms races, and macroeconomic search.  A fundamental paper on global convergence of 
evolutionary dynamics is Hofbauer (2000); for a full treatment of these results, see 
Sandholm (2006). 
 Once we move beyond specific classes of games, global convergence to Nash 
equilibrium cannot be guaranteed; cycling and chaotic behavior become possible.  
Indeed, Hofbauer and Swinkels (1996) and Hart and Mas-Colell (2003) construct 
examples of games in which all reasonable deterministic evolutionary dynamics fail to 
converge to Nash equilibrium from most initial conditions.  These results tell us that 
general guarantees of converge to Nash equilibrium are impossible to obtain. 
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 In light of this fact, we might instead consider the extent to which solution concepts 
simpler than Nash equilibrium are supported by evolutionary dynamics.  Cressman 
and Schlag (1998) and Cressman (2003) investigate whether imitative dynamics lead to 
subgame perfect equilibria in reduced normal forms of extensive form games—in 
particular, generic games of perfect information.  In these games, interior solution 
trajectories do converge to Nash equilibrium components, and only subgame perfect 
components can be interior asymptotically stable.  But even in very simple games, 
interior asymptotically stable components need not exist, so the dynamic analysis may 
fail to select subgame perfect equilibria.  For a full treatment of these issues, see 
Cressman (2003). 
 What about games with strictly dominated strategies?  Early results on this question 
were positive:  Akin (1980), Nachbar (1990), Samuelson and Zhang (1992), and 
Hofbauer and Weibull (1996) prove that dominated strategies are eliminated under 
certain classes of imitative dynamics.  However, Berger and Hofbauer (2005) show that 
dominated strategies need not be eliminated under the BNN dynamic.  Pushing this 
argument further, Hofbauer and Sandholm (2005) find that dominated strategies can 
survive under any continuous evolutionary dynamic that satisfies positive correlation 
and innovation.  The later condition requires that whenever there is an unused best 
response, there is an unused best response that is growing.  Thus, when revision is 
based on direct evaluation of payoffs rather than imitation of successful opponents, 
evolutionary dynamics may violate even the mildest rationality criteria. 
 
7.  Conclusion 
 
 Because the literature on evolutionary dynamics came to prominence shortly after 
the literature on equilibrium refinements, it is tempting to view the former literature as 
a branch of the latter.  But while it is certainly true that evolutionary models have 
something to say about selection among multiple equilibria, viewing them simply as 
equilibrium selection devices can be misleading.  As we have seen, evolutionary 
dynamics capture the behavior of large numbers of myopic, imperfectly informed 
decision makers.  Using evolutionary models to predict behavior in interactions 
between, say, two well informed players is daring at best. 
 The negative results described in the previous section should be understood in this 
light.  If we view evolutionary dynamics as an equilibrium selection device, the fact that 
they need not eliminate strictly dominated strategies might be viewed with 
disappointment.  But if we take the result at face value, it should not come as a surprise:  
if agents switch to strategies that perform reasonably well at the moment of choice, the 
fact that a strategy is never optimal is something they need not even know, and so will 
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not deter them from playing it.    
 A related point can be made about failures of convergence to equilibrium.  From a 
traditional point of view, persistence of disequlibrium behavior might seem to 
undermine the very possibility of a satisfactory economic analysis.  But the work 
described in this entry suggests that in large populations, this possibility is not only 
real, but is also one that game theorists are well equipped to analyze. 
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