
Best Experienced Payoff Dynamics and
Cooperation in the Centipede Game:

Online Appendix

William H. Sandholm∗, Segismundo S. Izquierdo†, and Luis R. Izquierdo‡

March 7, 2019

Contents
I Exact solutions of systems of polynomial equations 2

I.1 Gröbner bases . 2
I.2 Algebraic numbers . 3
I.3 Examples . 4

II Exact and numerical calculation in Mathematica 5
II.1 Algebraic numbers and solutions to polynomial equations 5
II.2 Algorithms from computational algebra . 6
II.3 Numerical evaluation and precision tracking 6

III The BEP Centipede.nb notebook 7
III.1 Exact analysis . 8
III.2 Numerical analysis . 8
III.3 More on computation of approximate rest points and eigenvalues 9

IV Numerical evaluation of the interior rest point 11

V Estimates of the basin of attraction of ξ† for BEP(τall, κ, βmin) dynamics in
Centipede of length d = 4 12

VI Saddle points of BEP(τall, κ, βmin) dynamics in Centipede of length d = 4 15

∗Department of Economics, University of Wisconsin.
†Department of Industrial Organization, Universidad de Valladolid.
‡Department of Civil Engineering, Universidad de Burgos.

I. Exact solutions of systems of polynomial equations

In this section, we describe the algebraic tools that we use to compute the exact rest
points of the BEP dynamic in Centipede games.

I.1 Gröbner bases

Let Q[z1, . . . , zn], or Q[z] for short, denote the collection (more formally, the ring) of
polynomials in the variables z1, . . . , zn with rational coefficients. Let F = { f1, . . . fm} ⊂ Q[z]
be a set of such polynomials. Let Z be a subset ofRn, and consider the problem of finding
the set of points z∗ ∈ Z that are zeros of all polynomials in F.

To do so, it is convenient to first consider finding all zeros in Cn of the polynomials in
F. In this case, the set of interest,

(1) V(f1, . . . , fm) = {z∗ ∈ Cn : f j(z∗) = 0 for all 1 ≤ j ≤ m}

is called the variety (or algebraic set) generated by f1, . . . , fm. To characterize (1), it is useful
to introduce the ideal generated by f1, . . . , fm:

(2) 〈 f1, . . . , fm〉 =
{∑m

j=1
h j f j : h j ∈ C[z] for all 1 ≤ j ≤ m

}
.

Thus the ideal (2) is the set of linear combinations of the polynomials f1, . . . , fm, where the
coefficients on each are themselves polynomials in C[z]. It is easy to verify that any other
collection of polynomials in C[z] whose linear combinations generate the ideal (2)—that
is, any other basis for the ideal—also generates the variety (1).

For our purposes, the most useful basis for the ideal (2) is the reduced lex-order Gröbner
basis, which we denote by G ⊂ Q[z]. This basis, which contains no superfluous polyno-
mials and is uniquely determined by its ideal and the ordering of the variables, has this
convenient property: it consists of polynomials in zn only, polynomials in zn and zn−1 only,
polynomials in zn, zn−1, and zn−2 only, and so forth. Thus if the variety (1) has cardinality
|V| < ∞, then it can be computed sequentially by solving univariate polynomials and
substituting backward.1

In many cases, including all that arise in this paper, the basis G is of the simple form

(3) G = {gn(zn), zn−1 − gn−1(zn), . . . , z1 − g1(zn)}

for some univariate polynomials gn, . . . , g1, where gn has degree deg(gn) = |V| and where
deg(gk) < |V| for k < n.2 In such cases, one computes the variety (1) by finding the |V|

1The notion of Gröbner bases and the basic algorithm for computing them are due to Buchberger (1965).
Cox et al. (2015) provide an excellent current account of Gröbner basis algorithms, as well as a thorough
introduction to the ideas summarized above.

2According to the shape lemma, a sufficient condition for the reduced lex-order basis to be of form (3) is
that each point in (1) have a distinct zn component and that (2) be a radical ideal, meaning that if it includes
some integer power of a polynomial, then it includes the polynomial itself. See Becker et al. (1994) and

–2–

complex roots of gn, and then substituting each into the other n− 1 polynomials to obtain
the |V| elements of (1).3

I.2 Algebraic numbers

The first step in finding the zeros of the polynomials in G ⊂ Q[z] is to find the roots of
the univariate polynomial gn. There are well-known limits to what can be accomplished
here: Abel’s theorem states that there is no solution in radicals to general univariate
polynomial equations of degree five or higher. Nevertheless, tools from computational
algebra allow us to represent such solutions exactly.

Let Q̄ ⊂ C denote the set of algebraic numbers: the complex numbers that are roots of
nonzero polynomials with rational coefficients. Q̄ is a subfield of C, and this fact and the
definition of algebraic numbers are summarized by saying that Q̄ is the algebraic closure of
Q.4

Every univariate polynomial g ∈ Q[x] can be factored as a product of irreducible poly-
nomials inQ[x], which cannot themselves be further factored into products of nonconstant
elements of Q[x].5 If an irreducible polynomial h ∈ Q[x] is of degree k, it has k distinct
roots a1, . . . , ak ∈ Q̄. The multiple of h whose leading term has coefficient 1 is called the
minimal polynomial of these roots. One often works instead with the multiple of h that is
primitive in Z[x], meaning that its coefficients are integers with greatest common divisor
1.

Each algebraic number is uniquely identified by its minimal polynomial h and a label
that distinguishes the roots of h from one another. For instance, one can label each
root a j ∈ Q̄ with a numerical approximation that is sufficiently accurate to distinguish a j

from the other roots. In computer algebra systems, the algebraic numbers with minimal
polynomial h are represented by pairs consisting of h and an integer in {1, . . . , k} which
ranks the roots of h with respect to some ordering; for instance, the lowest integers are
commonly assigned to the real roots of h in increasing order. Just as the symbol

√
2 is a

label for the positive solution to x2
− 2 = 0, the approach above provides labels for every

algebraic number.6

If the Gröbner basis G is of form (3), then we need only look for the roots of the
irreducible factors h of the polynomial gn, which are the possible values of xn ∈ Q̄; then
substitution into the univariate polynomials gn−1, . . . , g1 determines the corresponding

Kubler et al. (2014).
3Although we are only interested in elements of the variety (1) that lie in the state space Ξ, the solution

methods described above only work if (1) has a finite number of solutions in Cn.
4Like C, Q̄ is algebraically closed, in that every univariate polynomial with coefficients in Q̄ has a root in

Q̄. It follows from this and the existence of lex-order Gröbner bases that when the variety (1) has a finite
number of elements, the components of its elements are algebraic numbers.

5“Typical” polynomials in Q[x] are irreducible: for instance, the quadratic ax2 + bx + c with a, b, c ∈ Q is
only reducible if

√

b2 − 4ac ∈ Q. By Gauss’s lemma, polynomial factorization in Q[x] is effectively equivalent
to polynomial factorization in Z[x]. For an excellent presentation of polynomial factorization algorithms,
see von zur Gathen and Gerhard (2013, Ch. 14–16).

6There are exact methods based on classic theorems of Sturm and Vincent for isolating the real roots of
a polynomial with rational coefficients; see McNamee (2007, Ch. 2 and 3) and Akritas (2010).

–3–

values of the other variables. The fact that these latter values are generated from a fixed
algebraic number allows us to work in subfields of Q̄ in which arithmetic operations
are easy to perform. If the minimal polynomial h of α ∈ Q̄ has degree deg(h), then for
any polynomial f , one can find a polynomial f ∗ of degree deg(f ∗) < deg(h) such that
f (α) = f ∗(α). It follows that the values of gn−1(α), . . . , g1(α) are all elements of

Q(α) =


deg(h)−1∑

k=0

ak α
k : a0, . . . , adeg(h)−1 ∈ Q

 ⊂ Q̄,
called the field extension of Q generated by α. Straightforward arguments show that the
representation of elements of Q(α) by sequences of coefficients (a0, . . . , ad) makes addition
and multiplication in Q(α) simple to perform. For further details on algebraic numbers
and field extensions, we refer the reader to Dummit and Foote (2004, Chapter 13) and
Cohen (1993, Chapter 4).

I.3 Examples

To illustrate the techniques above, we use them to compute the rest points of the
BEP(τtwo, 1, βmin) dynamic in the Centipede games with d = 3 and d = 4 decision nodes.
Since x ∈ X and y ∈ Y, we need not explicitly write the laws of motion for the final
components of x and y, as those components can be deduced from others and the simplex
constraints.7

Example I.1. The BEP(τtwo, 1, βmin) dynamic in Centipede of length d = 3 is

ẋ1 = 1
2

(
y1(x1 + x2) + y1(x1 + x3)

)
− x1,

ẋ2 = 1
2

(
y2(x1 + x2) + (y2 + (y1)2)(x2 + x3)

)
− x2,(4)

ẏ1 = ((x2 + x3)(x1 + x2) + (x1)2)(y1 + y2) − y1

To find the rest points of this system, we substitute x3 = 1 − x1 − x2 and y2 = 1 − y1 in
the right-hand sides of (4) to obtain a system of three equations and three unknowns. We
then compute a Gröbner basis of form (3) for the right-hand sides of (4):

(5)

{
3(y1)4

− 8(y1)3 + 13(y1)2
− 12y1 + 4, 4x2 + 3(y1)3

− 5(y1)2 + 6y1 − 4,

8x1 − 3(y1)3 + 2(y1)2
− 9y1 + 2

}
.

The initial quartic in (5) has roots 1, 2
3 , and (1 ±

√
7 i)/2. Of course, only the first two

roots could be components of states in Ξ. Substituting y1 = 1 in the remaining polynomials
in (5) and equating them to 0 yields x1 = 1 and x2 = 0, which with the simplex constraints

7The Gröbner basis algorithm sometimes runs faster if all components are retained and the left-hand
sides of the constraints

∑s1

i=1 xi − 1 = 0 and
∑s2

j=1 y j − 1 = 0 are included in the initial set of polynomials. Our
Mathematica notebook includes both implementations.

–4–

gives us the backward induction state ξ†. Substituting y1 = 2
3 instead yields the interior

state ξ∗ = (x∗, y∗) = ((1
2 ,

1
3 ,

1
6), (2

3 ,
1
3)). This is the complete set of rest points of the dynamic

(4). _

Example I.2. The BEP(τtwo, 1, βmin) dynamic in Centipede of length d = 4 is

(6)

ẋ1 = 1
2

(
y1(x1 + x2) + y1(x1 + x3)

)
− x1,

ẋ2 = 1
2

(
(y2 + y3)(x1 + x2) + (y2 + y1(y1 + y3))(x2 + x3)

)
− x2,

ẏ1 = 1
2 ((x2 + x3)(x1 + x2) + (x1)2)

(
(y1 + y2) + (y1 + y3)

)
− y1,

ẏ2 = 1
2 ((x2 + x3)(x1 + x3)(y1 + y2) + (x1 + x2(x2 + x3) + (x3)2)(y2 + y3)) − y2

We can again compute a Gröbner basis of form (3). Its univariate polynomial is

(7) 4096(y2)8
−28608(y2)7+79812(y2)6

−64332(y2)5+39744(y2)4
−9180(y2)3+648(y2)2

−243y2.

This polynomial has root 0, which again generates the backward induction state ξ†.
Dividing (7) by y2 yields an irreducible 7th degree polynomial. Using the algorithms
mentioned above, one can show that this polynomial has one real root, which we designate
by y∗2 = Root[4096α7

−28608α6+79812α5
−64332α4+39744α3

−9180α2+648α−243, 1] ≈ .3607,
and six complex roots. Substituting y∗2 into the remaining polynomials from the Gröbner
basis and using the simplex constraints, we obtain an exact expression for the interior rest
point ξ∗, whose components are elements of the field extension Q(y∗2); their approximate
values are ξ∗ = (x∗, y∗) ≈ ((.2575, .4358, .3068), (.4095, .3607, .2298)). _

II. Exact and numerical calculation in Mathematica

In this section we describe the built-in Mathematica functions we use to prove exact
(analytical) results and to obtain numerical evaluations of exact expressions.

II.1 Algebraic numbers and solutions to polynomial equations

To obtain our analytical results, we take advantage of Mathematica’s ability to perform
exact computations using algebraic numbers. As described in Strzeboński (1996, 1997),
Mathematica represents algebraic numbers using Root objects, with Root[poly, k] desig-
nating one of the roots of the minimal polynomial poly. The index k is used to single out a
particular root of poly, with the lowest indices referring to the real roots of poly in increas-
ing order, and the higher indices referring to the complex roots in a more complicated
way. Root objects also contain a hidden third element that specifies an isolating set for the
root, meaning a set containing the root of poly in question and no others.

The forms of isolating sets depend on whether roots are isolated using arbitrary-
precision floating point methods or exact methods. If Mathematica’s default settings are
used, then roots are isolated using arbitrary-precision floating point methods based on the

–5–

Jenkins-Traub algorithm (Jenkins (1969), Jenkins and Traub (1970a,b)), the workhorse nu-
merical algorithm for this purpose. While in theory this algorithm always isolates all real
and complex roots of poly in disjoint disks in the complex plane, flawless implementation
of the algorithm is difficult; see Strzeboński (1997, p. 649).

If we instead use the setting

SetOptions[Root,ExactRootIsolation->True]

then Mathematica isolates roots using exact methods—that is, methods that only use ratio-
nal number calculations. Real roots of polynomials are isolated in disjoint intervals using
the Vincent-Akritas-Strzeboński method, which is based on Descartes’ rule of signs and a
classic theorem of Vincent; see Akritas et al. (1994) and Akritas (2010). Complex roots are
isolated in rectangles using the Collins and Krandick (1992) method.

Exact roots of univariate polynomials (and much else) can be computed using the
Mathematica function Reduce. When computing the exact rest points of BEP dynamics, we
apply Reduce to the output of the function GroebnerBasis, described next.

II.2 Algorithms from computational algebra

The Mathematica function GroebnerBasis is an implementation of a proprietary vari-
ation of the algorithm of Buchberger (1965, 1970).8 Choosing the option Method ->
Buchberger causes Mathematica to use the original Buchberger algorithm, which runs
considerably more slowly than the default algorithm; however, there was only one case
in which the default algorithm produced a Gröbner basis and the Buchberger algorithm
failed to terminate.

The Mathematica function CylindricalDecomposition implements the Collins (1975)
cylindrical algebraic decomposition algorithm with various improvements.9 If this func-
tion is run in its default mode, it makes use of arbitrary-precision arithmetic. To force
Mathematica to work with algebraic numbers, one uses the following settings:

SetOptions[Root,ExactRootIsolation->True]

SetSystemOptions[”InequalitySolvingOptions”->”CADDefaultPrecision”->Infinity]

Unfortunately, these settings cause CylindricalDecomposition to run extremely slowly,
and in the case of BEP dynamics in Centipede it only generates a result in cases with 2
dimensions and, for some specifications of the dynamics, 3 dimensions. Even if arbitrary-
precision arithmetic is permitted, the function generates a result for all BEP dynamics in
cases with dimension 2 or 3, but not for higher dimensions.

II.3 Numerical evaluation and precision tracking

When Mathematica performs calculations using arbitrary-precision numbers x, it keeps
track of the digits whose correctness it views as guaranteed. Precision[x] reports the

8An up-to-date presentation of Gröbner basis algorithms, including many improvements on Buch-
berger’s algorithm, can be found in Cox et al. (2015).

9See reference.wolfram.com/language/tutorial/ComplexPolynomialSystems.html for details.

–6–

number of correct base 10 significant digits of x: for instance, if x = d0.d1d2d3d4. . .×10k, the
precision is the number of the correct digits in d0.d1d2d3d4. . . Accuracy[x] is the number of
correct base 10 digits of x to the right of the decimal point. Exact numbers in Mathematica
(e.g., integers, rational numbers, and algebraic numbers) have Precision equal to∞.

To perform certain parts of our analysis (in particular, checking that an eigenvalue of a
derivative matrix has negative real part), we need to numerically evaluate exact numbers
and expressions. We do so using the Mathematica function N. N[expr, n] evaluates expr
as an arbitrary-precision number at guaranteed precision n. When Mathematica performs
computations using arbitrary-precision numbers, it maintains precision and accuracy
guarantees, the values of which can be accessed using the Precision and Accuracy
functions.

While in principle Mathematica’s precision tracking should not make mistakes, there
are at least two reasons for exercising caution when using it in proofs. First, Mathematica’s
precision tracking is not based on interval arithmetic, which represents real and complex
numbers using exact intervals (in R) and rectangles (in C) that contain the numbers in
question, and which relies on theorems that define rules for performing arithmetic and
other mathematical operations on these intervals and rectangles that maintain contain-
ment guarantees (Alefeld and Herzberger (1983), Tucker (2011)). Instead, Mathematica’s
precision bounds are sometimes obtained using faster methods of the Jenkins-Traub vari-
ety (see Section II.1), which work correctly in theory but which are difficult to implement
perfectly. Second, Mathematica’s precision tracking is a black box: the specific algorithms
it employs are proprietary.

We contend with these issues by restricting our use of Mathematica’s numerical evalu-
ation and precision tracking to a few clearly delineated cases: the evaluation of algebraic
numbers, and the basic arithmetic operations of addition, subtraction, multiplication, and
division. In particular, we do not use Mathematica for precision tracking in the compu-
tation of matrix inverses or the solution of linear systems, operations for which interval
arithmetic does not generally provide clean answers (Alefeld and Herzberger (1983)).
While one could insist that interval arithmetic be used for all non-exact calculations, we
chose not to do so.

III. The BEP Centipede.nb notebook

In this section we describe the main functions from the BEP Centipede.nb notebook,
which contains all of the procedures we use to analyze BEP dynamics. Section III.1 de-
scribes functions used to prove analytical results, and Section III.2 describes the functions
used in numerical analyses and in approximations with error bounds (cf. Appendix C).
More details about the use of these functions are provided in the BEP Centipede.nb note-
book itself. Section III.3 explains the algorithms used to compute numerical values of rest
points of the dynamics and eigenvalues of their derivative matrices.

Unless stated otherwise, the functions described below take a test-set ruleτ ∈ {τall, τtwo, τadj
},

a tie-breaking rule β ∈ {βmin, βstick, βunif
} and a length d of the Centipede game as parame-

ters. All functions besides the last three are for BEP dynamics with number of trials κ = 1.

–7–

The BEP Centipede.nb notebook includes examples of the use of each of the functions.

III.1 Exact analysis

The functions for exact analysis of BEP dynamics in Centipede are as follows:

ExactRestPoints Uses GroebnerBasis and Reduce to compute the exact rest points of
the dynamic.

InstabilityOfVertexRestPoint Conducts an analysis of the local stability of the vertex
rest point ξ†. To do this, the function computes the derivative matrix DV (ξ†) of the
dynamic and the eigenvalues and eigenvectors of DV(ξ†), where V : aff(Ξ) → TΞ (see
Appendix A). Finally, the function reports whether one can conclude that ξ† is unstable.
The function was not used explicitly in our analysis. Instead, we used it to determine the
form of the derivative matrix, eigenvalues, and eigenvectors for arbitrary values of d.

LocalStabilityOfInteriorRestPoint Conducts an analysis of the local stability of the
interior rest point ξ∗. To do this, the function computes a rational approximation ξ of
the exact interior rest point ξ∗. The function then evaluates the eigenvalues of DV(ξ),
evaluates a version of the perturbation bound from Proposition C.1, and reports whether
one can conclude that ξ∗ is asymptotically stable.

GlobalStabilityOfInteriorRestPoint Conducts an analysis of the global stability of
the interior rest point ξ∗. To do this, the function uses CylindricalDecomposition to
determine whether the relevant Lyapunov function (see Section 3.3) is a strict Lyapunov
function for the interior rest point ξ∗ on domain Ξ r {ξ†}.

III.2 Numerical analysis

The following functions from the BEP Centipede.nb are used for numerical analysis
and as subroutines for LocalStabilityOfInteriorRestPoint.

FloatingPointApproximateRestPoint Computes a floating point approximation of the
stable interior rest point of the BEP dynamic. See Section III.3 for details.

RationalApproximateRestPoint Computes a rational approximation of the stable inte-
rior rest point of the BEP dynamic. See Section III.3 for details.

EigenvaluesAtRationalApproximateRestPoint Computes the exact eigenvalues of DV(ξ),
where ξ is the rational approximation to the interior rest point obtained from a call to
RationalApproximateRestPoint. See Section III.3 for details.

NEigenvaluesAtRationalApproximateRestPoint Computes the eigenvalues of DV(ξ̃)
using arbitrary-precision arithmetic, where ξ̃ is a 16-digit precision approximation to the
rational point computed using RationalApproximateRestPoint. See Section III.3 for
details.

–8–

NumericalGlobalStabilityOfInteriorRestPointLyapunov Evaluates the time deriva-
tive Λ̇(ξ) = ∇Λ(ξ)′V(ξ) at a floating-point approximation Λ of the appropriate candidate
Lyapunov function L for the interior rest point ξ∗, reporting instances in which the time
derivative is not negative should any exist. The (presumably large number of) states ξ at
which to evaluate Λ̇(ξ) is chosen by the user.

NumericalGlobalStabilityOfInteriorRestPointNDSolve Computes numerical solu-
tions to the BEP dynamic from initial conditions provided by the user, and reports whether
any of these numerical solutions fails to converge to a neighborhood of the interior rest
point ξ∗.

NDSolveMeanDynamics Uses Mathematica’s NDSolve function to compute a numerical
solution to the BEP dynamic from an initial condition provided by the user. The solution
is computed until the time at which the norm of the law of motion is sufficiently small,
where what constitutes sufficiently small can be chosen by the user. The function also
graphs the components of the state as a function of time, and reports the terminal point
and the time at which this point is reached.

FloatingPointApproximateRestPointTestAllMinIfTieManyTrials Uses Mathematica’s
FindRoot function to compute a floating point approximation of a rest point of the
BEP(τall, κ, βmin) dynamic, where the number of trials κ is specified by the user. The
function returns only one rest point. When there is more than one rest point, which one
is computed depends strongly on the initial condition given to the function as an input.
This function was used to produce Figures 3 and 4 in the main paper and to compute the
saddle points shown in Table 5 below.

NDSolveMeanDynamicsTestAllMinIfTieManyTrials Uses Mathematica’s NDSolve func-
tion to compute a numerical solution of the BEP(τall, κ, βmin) dynamic, where the number
of trials κ and the initial condition of the solution are specified by the user. The solution
is computed until the time at which the norm of the law of motion is sufficiently small,
where what constitutes sufficiently small can be chosen by the user. The function also
graphs the components of the state as a function of time, and reports the terminal point
and the time at which this point is reached. The function was used in producing Figure 5.

EstimateSizeOfBasinOfAttractionOfVertexTestAllMinIfTieManyTrials Provides an
estimate of the size of the basin of attraction of the vertex rest point ξ† under the
BEP(τall, κ, βmin) dynamic. To do so, it discretizes the set of population states Ξ into a
grid whose mesh is chosen by the user, and solves the dynamic with these grid points
as initial conditions using Mathematica’s NDSolve function. It returns the set of initial
conditions from which the solution converges to ξ†, and the set of all their neighbors in
the grid. See Section V for details.

III.3 More on computation of approximate rest points and eigenvalues

The BEP Centipede.nb notebook computes approximate rest points of BEP(τ, 1, β) dy-
namics using the Euler method: {ξt}

T
t=0 is computed starting from an initial condition ξ0

–9–

by iteratively applying

(8) ξt+1 = ξt + h V (ξt),

where V : Rs
→ Rs is the (extended) law of motion of the dynamics and h is the step size

of the algorithm. This algorithm is run in two sequential stages, to be described next.
When one of the first two FloatingPointApproximateRestPoint... functions from

Section III.2 is called, algorithm (8) is run using IEEE 754 Standard double-precision
floating-point arithmetic. The step size of the algorithm is set to h = 2−4 by default, and
the initial condition is ξ0 = (x0, y0) ∈ Ξ = (X,Y), where x0 and y0 are the barycenters of
simplices X and Y by default. Several thousand iterations of (8) are run, and the output of
each iteration is projected onto Ξ to minimize the accumulation of roundoff errors from
the floating-point calculation.

The floating-point numbers obtained in this way are very close to the exact quantities
they approximate, but their digits (i.e., the values of the di in x = d0.d1d2d3d4. . . × 10k) may
all be wrong, especially in small numbers, since many of the exact numbers we aim to
approximate lie outside the range of IEEE 754 double-precision.10

To address this issue, the function RationalApproximateRestPoint begins with a call
to FloatingPointApproximateRestPoint, and then uses the output of this procedure to
create the initial condition for a second stage that employs rational arithmetic. This initial
condition is the rational point in Ξ that lies closest to the floating-point output of the
first stage. The step size h is set to 1 by default in the second stage, since overshooting
is no longer a problem in the neighborhood of the exact rest point. Increment (8) is
executed repeatedly using rational arithmetic until it locates a rational point ξ∗T that is an
approximate fixed point of (8), in the sense that ξT and ξT+1 = ξT + V (ξT) agree with 6
digits of precision for numbers greater or equal to 10−4, or 3 digits of precision for smaller
numbers. This agrees with the format we use to report rest points in Section IV.
NEigenvaluesAtRationalApproximateRestPoint computes the eigenvalues of DV(ξ̃)

using arbitrary-precision arithmetic, where ξ̃ is a 16-digit precision approximation to
the rational point computed by calling RationalApproximateRestPoint. The use of
arbitrary precision allows us to keep track of the precision of the computed eigenvalues.
Proposition C.1 provides a bound on the distances between the eigenvalues of DV(ξ) and
the eigenvalues of DV(ξ∗). In Section IV, the reported eigenvalues, which are arbitrary-
precision approximations to the (algebraic-valued) eigenvalues of DV(ξ), are shown with
5 digits of precision for numbers greater or equal to 1, 4 digits of precision for numbers
greater or equal to 10−2, and 3 digits of precision for smaller numbers.

10For example, note that the IEEE 754 double-precision representation of numbers such as 3.78 × 10−681

and 2.18 × 10−20413 (both of which appear in Table 1 below) is 0, since both numbers are well below
2−1074

≈ 4.94 × 10−324, which is the smallest positive IEEE 754 double-precision number.

–10–

IV. Numerical evaluation of the interior rest point

Table 1 presents approximate components of the unique interior rest point of the
BEP(τall, 1, βmin) dynamic in Centipede games of lengths up to d = 20.

Table 2 shows approximate eigenvalues of the derivative matrix DV(ξ∗) at the interior
rest point ξ∗ of BEP(τall, 1, βmin) dynamics in Centipede games of lengths up to d = 20.

p [6] [5] [4] [3] [2] [1] [0]
3 - - - - - .618034 .381966
4 - - - - .113625 .501712 .384663
5 - - - - .113493 .501849 .384658
6 - - - 3.12 × 10−9 .113493 .501849 .384658
7 - - - 3.12 × 10−9 .113493 .501849 .384658
8 - - 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
9 - - 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
10 - 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
11 - 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
12 1.06 × 10−122476 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
...

...
...

...
...

...
...

...
20 1.06 × 10−122476 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658

q [6] [5] [4] [3] [2] [1] [0]
3 - - - - .381966 .381966 .236068
4 - - - - .337084 .419741 .243175
5 - - - .001462 .335672 .419706 .243160
6 - - - .001462 .335672 .419706 .243160
7 - - 9.53 × 10−35 .001462 .335672 .419706 .243160
8 - - 9.53 × 10−35 .001462 .335672 .419706 .243160
9 - 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160

10 - 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
11 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
12 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
...

...
...

...
...

...
...

...
20 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160

Table 1: The interior rest point of the BEP(τall, 1, βmin) dynamic for Centipede of lengths d ∈ {3, . . . , 20}. p
denotes the penultimate player, q the last player. The dashed lines separate exact (d ≤ 6) from numerical

(d ≥ 7) results.

–11–

d = 3 −1 ± .3820 −1
d = 4 −1.1411 ± .3277 i −.8589 ± .3277 i
d = 5 −1.1355 ± .3284 i −.8645 ± .3284 i −1.
d = 6 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i
d = 7 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1.
d = 8 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1.
d = 9 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1.

d = 10 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1. · · ·
...

...
...

...
...

...
... · · ·

d = 20 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1. · · ·

Table 2: Approximate eigenvalues of DV(ξ∗) for the BEP(τall, 1, βmin) dynamic. The symbol “−1.” is used as
a shorthand for −1.0000. The dashed lines separate exact (d ≤ 6) from numerical (d ≥ 7) results.

V. Estimates of the basin of attraction of ξ† for BEP(τall, κ, βmin)
dynamics in Centipede of length d = 4

In this section, we provide estimates of the basin of attraction of the backward induction
state ξ† in Centipede games of length d = 4 under BEP(τall, κ, βmin) dynamics. We do so for
numbers of trials ranging from κ = 5, the smallest number for which ξ† is asymptotically
stable (see Proposition 4.1) to κ = 34 and for selected larger values.

We estimated the size of the basin by numerically computing solutions to the BEP(τall, κ, βmin)
dynamics from points in a grid of initial conditions of mesh 1

50 in the set of population

states Ξ. This grid contains a total of
(52

50

)2
= 1,758,276 points, so an exhaustive exploration

is not feasible. The algorithm we used to decide which points in the grid to explore aims at
“growing” the basin of attraction from ξ† outwards. Specifically, we start at the vertex ξ†

and extend outward, recursively visiting all neighboring points in the grid until obtaining
a “boundary” two-grid-points thick in which no solution converges to ξ†.

For κ ∈ {5, . . . , 34}, Table 3 presents all of the grid points from which solutions of
BEP(τall, κ, βmin) dynamics converge to ξ†. Table 4 presents the total number of such
points, as well as the sum of the number of such points and the number of neighbors of
such points; these numbers provide lower and upper bounds on the size of the basin.

We make two observations about these results. First, Table 3 shows that state ξ† is not
at all robust to changes in the behavior of population 1. This point is reinforced in Table
5, which shows that the saddle points of the dynamics all place mass of at least .998 on
strategy 1. Second, Table 4 shows that the estimated size of the basin is very small. For
instance, for κ = 100, the lower and upper estimates of the size of the basin are 51 and 166
grid points, out of the total of 1,758,276 grid points.

–12–

Condition on κ x1 x2 x3 y1 y2 y3

1 0 0 1 0 0
κ ≥ 6 1 0 0 0.98 0.02 0

κ = 7 or κ ≥ 9 1 0 0 0.96 0.04 0
κ ≥ 9 1 0 0 0.94 0.06 0
κ ≥ 10 1 0 0 0.98 0 0.02

κ = 10 or κ ≥ 12 1 0 0 0.96 0.02 0.02
κ = 10 or κ ≥ 12 1 0 0 0.92 0.08 0

κ ≥ 12 1 0 0 0.94 0.04 0.02
κ = 12, 13 or κ ≥ 15 1 0 0 0.9 0.1 0

κ ≥ 15 1 0 0 0.92 0.06 0.02
κ = 15, 16 or κ ≥ 18 1 0 0 0.88 0.12 0

κ = 15, 16, 17, 18 or κ ≥ 20 1 0 0 0.96 0 0.04
κ ≥ 17 1 0 0 0.9 0.08 0.02

κ = 17 or κ ≥ 20 1 0 0 0.94 0.02 0.04
κ = 18, 19 or κ ≥ 21 1 0 0 0.88 0.1 0.02
κ = 18 or κ ≥ 21 1 0 0 0.86 0.14 0

κ ≥ 20 1 0 0 0.92 0.04 0.04
κ = 20 or κ ≥ 25 1 0 0 0.94 0 0.06
κ = 21 or κ ≥ 24 1 0 0 0.86 0.12 0.02
κ = 22 or κ ≥ 24 1 0 0 0.9 0.06 0.04
κ = 24 or κ ≥ 27 1 0 0 0.84 0.16 0

κ ≥ 26 1 0 0 0.88 0.08 0.04
κ = 27 or κ ≥ 30 1 0 0 0.92 0.02 0.06
κ = 27 or κ ≥ 30 1 0 0 0.84 0.14 0.02

κ ≥ 30 1 0 0 0.86 0.1 0.04
κ = 30 or κ ≥ 33 1 0 0 0.82 0.18 0

κ ≥ 32 1 0 0 0.9 0.04 0.06
κ = 33 1 0 0 0.82 0.16 0.02

Table 3: Initial conditions in a grid of mesh 1
50 from which solutions of BEP(τall, κ, βmin) dynamics converge

to ξ† (κ ∈ {5, . . . , 34}).

–13–

κ # in-basin points
in-basin points

and their
out-of-basin neighbors

5 1 5
6 2 9
7 3 13
8 2 9
9 4 17
10 7 27
11 5 20
12 9 34
13 9 34
14 8 30
15 12 44
16 12 44
17 13 46
18 15 54
19 13 47
20 16 56
21 18 63
22 18 63
23 17 60
24 20 70
25 20 69
26 21 72
27 24 82
28 22 76
29 22 76
30 26 89
31 25 85
32 26 88
33 28 95
34 27 92
50 35 116

100 51 166

Table 4: Number of initial conditions in a grid of mesh 1
50 from which solutions of BEP(τall, κ, βmin)

dynamics converge to ξ†, and the total number of such points and their neighbors.

–14–

VI. Saddle points of BEP(τall, κ, βmin) dynamics in Centipede
of length d = 4

Table 5 presents approximate components of saddle points of BEP(τall, κ, βmin) dynam-
ics for Centipede games of length d = 4 for various κ.

x1 x2 x3

5 .999417 .000333 .000250
6 .999374 8.23 × 10−6 .000617
7 .999093 6.76 × 10−5 .000839
8 .999474 3.20 × 10−5 .000494
9 .999649 1.93 × 10−7 .000351

10 .998505 .000137 .001358
11 .998889 9.75 × 10−5 .001013
12 .998404 4.76 × 10−5 .001549
13 .998759 3.35 × 10−5 .001207
14 .998926 3.65 × 10−5 .001038
15 .998396 3.72 × 10−5 .001567
16 .998629 3.45 × 10−5 .001337
17 .998367 .000180 .001453
18 .998551 1.69 × 10−5 .001432
19 .998578 3.19 × 10−5 .001390
20 .998447 .000109 .001444
21 .998540 1.58 × 10−5 .001444
22 .998380 6.61 × 10−5 .001554
23 .998535 6.48 × 10−5 .001400
24 .998484 2.03 × 10−5 .001495
25 .998484 4.05 × 10−5 .001476
30 .998544 1.69 × 10−5 .001439
35 .998612 4.21 × 10−5 .001345
40 .998669 2.03 × 10−5 .001310
45 .998726 1.04 × 10−5 .001264
50 .998782 2.29 × 10−5 .001195

100 .999169 2.75 × 10−6 .000828
150 .999368 5.23 × 10−7 .000632
200 .999487 2.93 × 10−7 .000513

y1 y2 y3

5 .994197 .002904 .002899
6 .992520 .003747 .003733
7 .987382 .006326 .006292
8 .991613 .004201 .004186
9 .993702 .003154 .003144

10 .970561 .014810 .014629
11 .975875 .012124 .012001
12 .962408 .018963 .018629
13 .968257 .015991 .015752
14 .970372 .014917 .014711
15 .953015 .023757 .023228
16 .957068 .021686 .021246
17 .946117 .027235 .026647
18 .949167 .025733 .025100
19 .947422 .026621 .025958
20 .939865 .030463 .029672
21 .940517 .030176 .029308
22 .931278 .034908 .033814
23 .934926 .033024 .032050
24 .929859 .035671 .034470
25 .927065 .037100 .035835
30 .916397 .042658 .040945
35 .907601 .047209 .045190
40 .899161 .051657 .049182
45 .891781 .055554 .052664
50 .885579 .058794 .055627

100 .847323 .079244 .073433
150 .827851 .089787 .082362
200 .815327 .096613 .088061

Table 5: Saddle points of BEP(τall, κ, βmin) dynamics for Centipede of length d = 4.

–15–

References

Akritas, A. G. (2010). Vincent’s theorem of 1836: Overview and future research. Journal of
Mathematical Sciences, 168:309–325.

Akritas, A. G., Bocharov, A., and Strzeboński, A. W. (1994). Implementation of real root
isolation algorithms in Mathematica. In Abstracts of the International Conference on Interval
and Computer-Algebraic Methods in Science and Engineering (Interval ’94), pages 23–27, St.
Petersburg.

Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations. Academic Press,
New York.

Becker, E., Marinari, M. G., Mora, T., and Traverso, C. (1994). The shape of the Shape
Lemma. In von zur Gathen, J. and Giesbrecht, M., editors, ISSAC ’94: Proceedings of the
international symposium on symbolic and algebraic computation, pages 129–133. ACM.

Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings
nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck. Trans-
lated by M.P. Abramson as “An algorithm for finding the basis elements of the residue
class ring of a zero-dimensional polynomial ideal” in Journal of Symbolic Computation 41
(2006), 475–511.

Buchberger, B. (1970). Ein algorithmisches Kriterium für die Lösbarkeit eines algebrais-
chen Gleichungssystems. Aequationes mathematicae, pages 374–383. Translated by M.
P. Abramson and R. Lumbert as “An algorithmic criterion for the solvability of alge-
braic systems of equations” in B. Buchberger and F. Winkler, editors, Gröbner Bases and
Applications, p. 535–545, 1998, Cambridge University Press.

Cohen, H. (1993). A Course in Computational Algebraic Number Theory. Springer, Berlin.

Collins, G. E. (1975). Quantifier elimination for the theory of real closed fields by cylin-
drical algebraic decomposition. In Second GI Conference on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer,
Berlin.

Collins, G. E. and Krandick, W. (1992). An efficient algorithm for infallible polynomial
complex root isolation. In Wang, P. S., editor, Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC ’92), pages 189–194, Berkeley.

Cox, D., Little, J., and O’Shea, D. (2015). Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer International,
Cham, Switzerland, fourth edition.

Dummit, D. S. and Foote, R. M. (2004). Abstract Algebra. Wiley, Hoboken, NJ, third edition.

Jenkins, M. A. (1969). Three-stage variable-shift iterations for the solution of polynomial equations
with a posteriori error bounds for the zeros. PhD thesis, Stanford University.

–16–

Jenkins, M. A. and Traub, J. F. (1970a). A three-stage algorithm for real polynomials using
quadratic iteration. SIAM Journal on Numerical Analysis, 7:545–566.

Jenkins, M. A. and Traub, J. F. (1970b). A three-stage variable-shift iteration for polynomial
zeros and its relation to generalized Rayleigh iteration. Numerische Mathematik, 14:252–
263.

Kubler, F., Renner, P., and Schmedders, K. (2014). Computing all solutions to polyno-
mial equations in economics. In Schmedders, K. and Judd, K. L., editors, Handbook of
Computational Economics, volume 3, pages 599–652. Elsevier, Amsterdam.

McNamee, J. M. (2007). Numerical Methods for Roots of Polynomials, Part I. Elsevier, Ams-
terdam.

Strzeboński, A. W. (1996). Algebraic numbers in Mathematica 3.0. Mathematica Journal,
6:74–80.

Strzeboński, A. W. (1997). Computing in the field of complex algebraic numbers. Journal
of Symbolic Computation, 24:647–656.

Tucker, W. (2011). Validated Numerics: A Short Introduction to Rigorous Computations. Prince-
ton University Press, Princeton.

von zur Gathen, J. and Gerhard, J. (2013). Modern Computer Algebra. Cambridge University
Press, Cambridge, third edition.

–17–

