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Abstract

We study population game dynamics under which each revising agent tests each
of his strategies a fixed number of times, with each play of each strategy being against
a newly drawn opponent, and chooses the strategy whose total payoff was highest.
In the Centipede game, these best experienced payoff dynamics lead to cooperative play.
When strategies are tested once, play at the almost globally stable state is concentrated
on the last few nodes of the game, with the proportions of agents playing each strategy
being largely independent of the length of the game. Testing strategies many times
leads to cyclical play.
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1. Introduction

The discrepancy between the conclusions of backward induction reasoning and ob-
served behavior in certain canonical extensive form games is a basic puzzle of game theory.
The Centipede game (Rosenthal (1981)), the finitely repeated Prisoner’s Dilemma, and re-
lated examples can be viewed as models of relationships in which each participant has
repeated opportunities to take costly actions that benefit his partner, and in which there
is a commonly known date at which the interaction will end. Experimental and anecdo-
tal evidence suggests that cooperative behavior may persist until close to the exogenous
terminal date (McKelvey and Palfrey (1992)). But the logic of backward induction leads
to the conclusion that there will be no cooperation at all.

Work on epistemic foundations provides room for wariness about unflinching appeals
to backward induction. To support this prediction, one must assume that there is always
common belief that all players will act as payoff maximizers at all points in the future, even
when many rounds of previous choices argue against such beliefs.1 Thus the simplicity
of backward induction belies the strength of the assumptions needed to justify it, and this
strength may help explain why backward induction does not yield descriptively accurate
predictions in some classes of games.2

This paper studies a dynamic model of behavior in games that maintains the as-
sumption that agents respond optimally to the information they possess. But rather than
imposing strong assumptions about agents’ knowledge of opponents’ intentions, we sup-
pose instead that agents’ information comes from direct but incomplete experience with
playing the strategies available to them. As with earlier work of Osborne and Rubinstein
(1998) and Sethi (2000), our model is best viewed not as one that incorporates irrational
choices, but rather as one of rational choice under particular restrictions on what agents
know.

Following the standard approach of evolutionary game theory, we suppose that two
populations of agents are recurrently randomly matched to play a two-player game.
This framework accords with some experimental protocols, and can be understood more
broadly as a model of the formation of social norms (Young (1998)). At random times, each
agent receives opportunities to switch strategies. At these moments the agent plays each
of his strategies against κ opponents drawn at random from the opposing population,
with each play of each strategy being against a newly-drawn opponent. He then switches

1For formal analyses, see Binmore (1987), Reny (1992), Stalnaker (1996), Ben-Porath (1997), Halpern
(2001), and Perea (2014).

2As an alternative, one could apply Nash equilibrium, which also predicts noncooperative behavior in
the games mentioned above, but doing so replaces assumptions about future rationality with the assumption
of equilibrium knowledge, which may not be particularly more appealing—see Dekel and Gul (1997).
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to the strategy that achieved the highest total payoff, breaking ties in favor of the lowest-
numbered strategy. Standard results imply that when the populations are large, the agents’
aggregate behavior evolves in an essentially deterministic fashion, obeying a differential
equation that describes the expected motion of the stochastic process described above
(Benaı̈m and Weibull (2003)). We study the properties of this differential equation when
agents play the Centipede game.

Our model builds on earlier work on games played by “procedurally rational players”.
If we replaced our tie-breaking rule with uniform tie-breaking, then the rest points of the
process (with κ = k) would correspond to the S(k) equilibria of Osborne and Rubinstein
(1998). The corresponding dynamics were studied by Sethi (2000). These and other
dynamics are instances of the broader family of best experienced payoff dynamics, or BEP
dynamics for short (Sandholm et al. (2019)), which allow for variation in how ties are
resolved and in the selection of sets of candidate strategies considered by revising agents.
The results we present here are robust to many different model specifications within the
family of BEP dynamics.

Our analysis of best experienced payoff dynamics in the Centipede game uses tech-
niques from dynamical systems theory. What is more novel is our reliance on algorithms
from computational algebra and perturbation bounds from linear algebra, which allow
us to solve exactly for the rest points of our differential equations and to perform rigorous
stability analyses in Centipede games with up to six decision nodes. We complement this
approach with numerical analyses of cases in which analytical results cannot be obtained.

Our initial results focus on dynamics under which each tested strategy is tested exactly
once (κ = 1), so that agents’ choices only depend on ordinal properties of payoffs. In
Centipede games, under the BEP dynamics studied here, the backward induction state—
the state at which all agents in both populations stop at their first opportunity—is a rest
point. However, we prove that this rest point is always repelling: the appearance of agents
in either population who cooperate to any degree is self-reinforcing, and eventually causes
the backward induction solution to break down completely.

We next obtain strong lower bounds on the total weight placed on cooperative strate-
gies at any other rest points of the BEP dynamic. At any such rest point, the probability
that play during a random match leads to one of the last five terminal nodes is above .96,
and the probability that play leads to one of the last seven terminal nodes is virtually 1.
We then use tools from computational algebra to perform an exact analysis of games with
up to six decision nodes, and we perform numerical analyses of longer games. In all cases,
we find that besides the unstable backward induction state, the dynamics have exactly
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one other rest point.3 The form of this rest point is essentially independent of the length
of the game. The rest point has virtually all players choosing to continue until the last few
nodes of the game. Moreover, this rest point is dynamically stable, attracting solutions
from all initial conditions other than the backward induction state. Thus if agents make
choices based on experienced payoffs, testing each strategy once and choosing the one
that performed best, then play converges to a stable rest point that exhibits high levels of
cooperation.

To explain why, we first observe that cooperative strategies are most disadvantaged
when they are most rare—specifically, in the vicinity of the backward induction state.
Near this state, the most cooperative agents would obtain higher expected payoffs by stop-
ping earlier. However, when an agent considers switching strategies, he tests each of his
strategies against new, independently drawn opponents. He may thus test a cooperative
strategy against a cooperative opponent, and less cooperative strategies against less coop-
erative opponents, in which case his best experienced payoff will come from the cooperative
strategy. Our analysis confirms that this possibility indeed leads to instability.4 After this
initial entry, the high payoffs generated by cooperative strategies when matched against
one another spurs their continued growth. This growth is only abated when virtually all
agents are choosing among the most cooperative strategies.

Our final results consider the effects of the number of trials κ of each strategy during
testing on predictions of play. It seems clear that if the number of trials is made sufficiently
large, so that the agents’ information about opponents’ behavior is quite accurate, then
the population’s behavior should come to resemble a Nash equilibrium. Indeed, when
agents possess exact information, so that aggregate behavior evolves according to the best
response dynamic (Gilboa and Matsui (1991), Hofbauer (1995)), results of Xu (2016) imply
that every solution trajectory converges to the set of Nash equilibria, all of which entail
stopping at the initial node.

Our analysis shows, however, that stable cooperative behavior can persist even for
substantial numbers of trials. To start, we prove that the backward induction state is
unstable as long as the number of trials κ is less than the length of the game. For larger
number of trials, the backward induction state becomes locally stable, but numerical ev-

3While traditional equilibrium notions in economics require stasis of choice, interior rest points of
population dynamics represent situations in which individuals’ choices fluctuate even as the expected
change in aggregate behavior is null—see Section 2.2.

4Specifically, linearizing any given specification of the dynamics at the backward induction state identifies
a single eigenvector with a positive eigenvalue (Appendix A). This eigenvector describes the mixture of
strategies in the two populations whose entry is self-reinforcing, and identifies the direction toward which
all other disturbances of the backward induction state are drawn. Direct examination of the dynamics
provides a straightforward explanation why the given mixture of entrants is successful (Example 3.3).
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idence suggests that its basin of attraction is very small. Examining Centipede games of
length d = 4 in detail, we find that a unique, attracting interior rest point with substantial
cooperation persists for moderate numbers of trials. With many trials, numerical analysis
suggests the attractor is always a single cycle which includes significant amounts of coop-
eration for numbers of trials as large as 200. We discuss in Section 4 how the robustness
of cooperation to fairly large numbers of trials can be explained using simple central limit
theorem arguments.

Our main technical contribution lies in the use of methods from computational algebra
and perturbation theorems from linear algebra to prove results about the properties of our
dynamics. The starting point for this analysis, one that suggests a broader scope for our
approach, is that decision procedures based on sampling from a population are described
by multivariate polynomials with rational coefficients. In particular, BEP dynamics are
described by systems of such equations, so finding their rest points amounts to finding the
zeros of these polynomial systems. To accomplish this, we compute a Gröbner basis for the
set of polynomials that defines each instance of our dynamics; this new set of polynomials
has the same zeros as the original set, but its zeros can be computed by finding the roots
of a single (possibly high-degree) univariate polynomial.5 Exact representations of these
roots, known as algebraic numbers, can then be obtained by factoring the polynomial into
irreducible components, and then using algorithms based on classical results to isolate
each component’s real roots.6 With these exact solutions in hand, we can rigorously
assess the rest points’ local stability through a linearization analysis. In order to obviate
certain intractable exact calculations, this analysis takes advantage of both an eigenvalue
perturbation theorem and a bound on the condition number of a matrix that does not
require the computation of its inverse.

The code used to obtain the exact and numerical results is available as a Mathematica
notebook posted on GitHub and on the authors’ websites. An online appendix provides
background and details about both the exact and the numerical analyses and reports
certain numerical results in full detail.

Related literature

Previous work relating backward induction and deterministic evolutionary dynamics
has focused on the replicator dynamic of Taylor and Jonker (1978) and the best response
dynamic of Gilboa and Matsui (1991) and Hofbauer (1995). Cressman and Schlag (1998)

5See Buchberger (1965) and Cox et al. (2015). For applications of Gröbner bases in economics, see Kubler
et al. (2014).

6See von zur Gathen and Gerhard (2013), McNamee (2007), and Akritas (2010).
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(see also Cressman (1996, 2003)) show that in generic perfect information games, every
interior solution trajectory of the replicator dynamic converges to a Nash equilibrium.
Likewise, Xu (2016) (see also Cressman (2003)) shows that in such games, every solution
trajectory of the best response dynamic converges to a component of Nash equilibria.
In both cases, the Nash equilibria approached need not be subgame perfect, and the
Nash equilibrium components generally are not locally stable. Focusing on the Centipede
game with three decision nodes, Ponti (2000) shows numerically that perturbed versions
of the replicator dynamic exhibit cyclical behavior, with trajectories approaching and
then moving away from the Nash component. In contrast, we show that for small and
moderate numbers of tests, best experienced payoff dynamics lead to a stable distribution
of cooperative strategies far from the Nash component.

Osborne and Rubinstein’s (1998) notion of S(k) equilibrium corresponds to the rest
points of the BEP dynamic under which agents test all strategies, subject each to k trials,
and break ties via uniform randomization.7 While most of their analysis focuses on
simultaneous move games, they show that in Centipede games, the probability with
which player 1 stops immediately in any S(1) equilibrium must vanish as the length
of the game grows large. As we will soon see (Observation 2.1), this conclusion may
fail if uniform tie-breaking is not assumed, with the backward induction state being an
equilibrium. Nevertheless, more detailed analyses below will show that this equilibrium
state is unstable under BEP dynamics.

Building on Osborne and Rubinstein (1998), Sethi (2000) introduces BEP dynamics
under which all strategies are tested and ties are broken uniformly.8 He shows that both
dominant strategy equilibria and strict equilibria can be unstable under these dynamics,
while dominated strategies can be played in stable equilibria. The latter fact is a basic
component of our analysis of cooperative behavior. Berkemer (2008) considers the local
stability of the unique rationalizable strategy profile in the traveler’s dilemma of Basu
(1994) under Sethi’s (2000) dynamics, obtaining a sufficient condition for the instability of
the rationalizable state. He shows numerically that the stable S(1) equilibrium becomes
independent of the number of strategies in the game, and provides evidence from agent-
based simulations that larger numbers of trials during testing can lead to cyclical behavior.9

Earlier efforts to explain cooperative behavior in Centipede and related games have
followed a different approach, applying equilibrium analyses to augmented versions of

7For extensions of S(k) equilibrium to more complex testing procedures, see Rustichini (2003).
8Cárdenas et al. (2015) and Mantilla et al. (2019) use these dynamics to explain stable non-Nash behavior

in public good games.
9For complementary models of dynamics based on a single sample, see Sandholm (2001), Kosfeld et al.

(2002), Droste et al. (2003), and Oyama et al. (2015).
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the game. The best known example of this approach is the work of Kreps et al. (1982).
These authors modify the finitely repeated Prisoner’s Dilemma by assuming that one
player attaches some probability to his opponent having a fixed preference for cooperative
play. They show that in all sequential equilibria of long enough versions of the resulting
Bayesian game, both players act cooperatively for a large number of initial rounds.10 To
justify this approach, one must assume that the augmentation of the original game is
commonly understood by the players, that the players act in accordance with a rather
complicated equilibrium construction, and that the equilibrium knowledge assumptions
required to justify sequential equilibrium apply. In contrast, our model makes no changes
to the original game other than placing it in a population setting, and it is built upon the
assumption that agents’ choices are optimal given their experiences during play.

2. Best experienced payoff dynamics in the Centipede Game

2.1 Normal form games and population games

A two-player normal form game G = {(S1,S2), (A,B)} is defined by pairs of strategy sets
Sp = {1, . . . , sp

} and payoff matrices A,B ∈ Rsp
×sq , p, q ∈ {1, 2}, p , q. Ai j and Bi j represent

the two players’ payoffs when strategy profile (i, j) ∈ S1
× S2 is played. When considering

extensive form games, our analysis focuses on the reduced normal form, whose strategies
specify an agent’s “plan of action” for the game, but not his choices at decision nodes that
are ruled out by his own previous choices.

In our population model, members of two unit-mass populations are matched to
play a two-player game. A population state for population 1 is an element of X = {x ∈
Rs1

+ :
∑

i∈S1 xi = 1}, where xi is the fraction of population 1 players choosing strategy i.
Likewise Y = {y ∈ Rs2

+ :
∑

i∈S2 yi = 1} is the set of population states for population 2. Thus
x and y are formally equivalent to mixed strategies for players 1 and 2, and elements of
the set Ξ = X × Y are formally equivalent to mixed strategy profiles. In a slight abuse of
terminology, we also refer to elements of Ξ as population states.

10McKelvey and Palfrey (1992) show that this analysis extends to the Centipede game. A different aug-
mentation is considered by Jehiel (2005), who assumes that agents bundle decision nodes from contiguous
stages into analogy classes, and view the choices at all nodes in a class interchangeably. Alternatively,
following Radner (1980), one can consider versions of Centipede in which the stakes of each move are
small, and analyze these games using ε-equilibrium; see Friedman and Oprea (2012) for a discussion. But
as Binmore (1998) observes, the existence of non-Nash ε-equilibrium depends on the relative sizes of the
stakes and of ε, and the backward induction solution always persists as a Nash equilibrium, and hence as
an ε-equilibrium.
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2.2 Revision protocols and evolutionary dynamics

To define evolutionary game dynamics, we follow the standard approach of specifying
microfoundations in terms of revision protocols.11 We suppose that at all times t ∈
[0,∞), each agent has a strategy he uses when matched to play game G. The empirical
distributions of these strategies are described by the population state ξ(t) = (x(t), y(t)).

Agents occasionally receive opportunities to switch strategies according to indepen-
dent rate 1 Poisson processes. An agent who receives an opportunity considers switching
to a new strategy, making his decision by applying a revision protocol. Formally, a revision
protocol for population 1 is described by a map (A, y) 7→ σ1(A, y) ∈ Xs1 that assigns own
payoff matrices and opposing population states to matrices of conditional switch probabili-
ties, where σ1

i j(A, y) is the probability that an agent playing strategy i ∈ S1 who receives a
revision opportunity switches to strategy j ∈ S1. Likewise, a revision protocol for popu-
lation 2 is described by a map (B, x) 7→ σ2(B, x) ∈ Ys2 with an analogous interpretation.12

It is well known that if the population sizes are large, the Markov process implicitly
defined by the above procedure is well approximated by solutions to a differential equation
defined by the expected motion of the process (Benaı̈m and Weibull (2003)). Here this
differential equation takes the form

(1)

ẋi =
∑
j∈S1

x jσ
1
ji(A, y) − xi for all i ∈ S1,

ẏi =
∑
j∈S2

y jσ
2
ji(B, x) − yi for all i ∈ S2.

Equation (1) is easy to interpret. Since revision opportunities are assigned to agents
randomly, there is an outflow from each strategy i proportional to its current level of
use. To generate inflow into i, an agent playing some strategy j must receive a revision
opportunity, and applying his revision protocol must lead him to play strategy i.

Outside of monomorphic (i.e. pure) cases, the rest points of the dynamic (1) should
not be understood as equilibria in the traditional game-theoretic sense. Rather, they
represent situations in which agents perpetually switch among strategies, but with the
expected change in the use of each strategy equaling zero.13 At states that are locally stable

11See Björnerstedt and Weibull (1996), Weibull (1995), Sandholm (2010a,b, 2015), and Izquierdo et al.
(2019).

12When σ1
i j and σ2

i j are independent of the current strategy i, as is true for the dynamic (3) we focus on
here, it is equivalent to interpret the process as one in which agents play a fixed strategy until leaving the
population, when they are replaced by new agents whose strategies are determined by applying σ1 and σ2.

13Thus in the finite-population version of the model, variations in the use of each strategy would be
observed. For a formal analysis, see Sandholm (2003).
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under the dynamic (1), fluctuations in any direction are generally undone by the action of
(1) itself. Contrariwise, fluctuations away from unstable equilibria are reinforced, so we
should not expect such states to be observed.

2.3 Best experienced payoff protocols and dynamics

We now introduce the class of revision protocols and dynamics that we study in this
paper. A best experienced payoff protocol is defined by a triple (τ, κ, β) consisting of a test set
rule τ, a number of trials κ, and a tie-breaking rule β. The triple (τ, κ, β) defines a revision
protocol in the following way. When an agent currently using strategy i ∈ Sp receives
an opportunity to switch strategies, he draws a set of strategies Rp

⊆ Sp to test according
to the distribution τp on the collection of subsets of Sp with at least two elements. He
then plays each strategy in Rp in κ random matches against members of the opposing
population. He thus engages in #Rp

× κ random matches in total, facing distinct sets of
opponents when testing different strategies. The agent then selects the strategy in Rp that
earned him the highest total payoff, breaking ties according to rule β. The triple (τ, κ, β)
thus defines a revision protocol σp for each population p. Inserting these revision protocols
into equation (1) defines a best experienced payoff dynamic.

Our analysis here focuses on the test-set rule test-all, τall, under which a revising agent
tests all of his strategies, and on the tie-breaking rule min-if-tie, βmin, which chooses the
lowest-numbered optimal strategy. We refer to the resulting dynamics (1) as BEP(τall, κ, βmin)
dynamics.

BEP dynamics based on other specifications of test-set and tie-breaking rules are stud-
ied in a companion paper, Sandholm et al. (2019); they are also discussed briefly in Section
3.4. Importantly, if we retain τall, but replace βmin with uniform tie-breaking, then the
rest points of the dynamic (1) are the S(k) equilibria of Osborne and Rubinstein (1998)
(with k = κ), and the dynamic itself is the one studied by Sethi (2000). In extensive
form games like Centipede, different strategies often earn the same payoffs, so the choice
of tie-breaking rule matters. Because of our convention for numbering strategies in the
Centipede game, the min-if-tie rule will be the one that is least conducive to cooperative
play.

Choice probabilities under best experienced payoff dynamics depend only on the
payoffs strategies earn during testing; they do not require agents to track the choices
made by their opponents. This property makes the dynamics appealing as a simple
model of play for extensive form games. Typically, a single play of an extensive form
game does not reveal the strategy chosen by one’s opponent, but only the portion of that
strategy required to determine the path of play. Consequently, it is not straightforward
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Figure 1: The Centipede game of length d = 8.

to specify how agents should use their experience of play to assess opponents’ choices of
strategies. Because they focus on the performances of own strategies, best experienced
payoff dynamics avoid such ambiguities.

2.4 The Centipede game

Centipede (Rosenthal (1981)) is a two-player extensive form game with d ≥ 2 decision
nodes (Figure 1). Each node presents two actions, stop and continue. The nodes are
arranged linearly, with the first one assigned to player 1 and subsequent ones assigned
in an alternating fashion. A player who stops ends the game. A player who continues
suffers a cost of 1 but benefits his opponent 3, and sends the game to the next decision
node if one exists.

In a Centipede game of length d, players 1 and 2 have d1 = bd+1
2 c and d2 = bd

2c decision
nodes, respectively. Thus player p has sp = dp + 1 strategies, where strategy i < sp is the
plan to continue at his first i − 1 decision nodes and to stop at his ith decision node, and
strategy sp is the plan to continue at all dp of his decision nodes. Of course, the portion
of a player’s plan that is actually carried out depends on the plan of his opponent. The
payoff matrices (A,B) of Centipede’s reduced normal form can be expressed concisely as

(2) (Ai j,Bi j) =

(2i − 2, 2i − 2) if i ≤ j,

(2 j − 3, 2 j + 1) if j < i.

It will sometimes be convenient to number strategies starting from the end of the game.
To do so, we write [k] ≡ sp

− k for k ∈ {0, . . . , dp
}, so that [0] denotes continuing at all nodes,

and [k] with k ≥ 1 denotes stopping at player p’s kth-to-last node.
We noted above that best experienced payoff dynamics with κ = 1 only depend on

ordinal properties of payoffs. In this case, what matters in (2) is that a player is better
off continuing at a given decision node if and only if his opponent will continue at the
subsequent decision node. If the cost of continuing is 1, this property holds as long as
the benefit obtained when one’s opponent continues exceeds 2. This ordering of payoffs
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also holds for typical specifications in which total payoffs grow exponentially over time.
When there are multiple trials of each tested strategy (κ = 1), then cardinal properties of
payoffs matter; in this case, Rosenthal’s (1981) specification (2) keeps the potential benefits
from continuing relatively modest.

The backward induction solution to Centipede has both players stop at each of their
decision nodes. We will thus call the population state ξ† = (x†, y†) ∈ Ξ with x†1 = y†1 = 1 the
(reduced) backward induction state. It is well known that all Nash equilibria of Centipede
have player 1 stop at his initial node. This makes player 2 indifferent among all of her
strategies, so Nash equilibrium requires that she choose a mixed strategy that makes
stopping immediately optimal for player 1.

Of course, these predictions require assumptions about what the players know. In
the traditional justification of Nash equilibrium, players are assumed to correctly an-
ticipate opponents’ play. Likewise, traditional justifications of the backward induction
solution require agents to maintain common belief in rational future play, even if behavior
contradicting this belief has been observed in the past.

2.5 Best experienced payoff dynamics for the Centipede game

We can now introduce the explicit formula for the BEP(τall, 1, βmin) dynamic in the
Centipede game.14

ẋi =

 s2∑
k=i

yk


 i∑

m=1

ym


s1
−i

+

i−1∑
k=2

yk

 k−1∑
`=1

y`


i−k  k∑

m=1

ym


s1
−i

− xi,(3a)

ẏ j =



 s1∑
k=2

xk

 (x1 + x2)s2
−1 + (x1)s2

− y1 if j = 1, s1∑
k= j+1

xk


 j+1∑

m=1

xm


s2
− j

+

j∑
k=2

xk

 k−1∑
`=1

x`


j−k+1  k∑

m=1

xm


s2
− j

− y j otherwise.

(3b)

Under test-all with min-if-tie, the choice made by a revising agent does not depend
on his original strategy. The first two terms of (3a) describe the two types of matchings
that lead a revising agent in the role of player 1 to choose strategy i. First, it could be that
when the agent tests i, his opponent plays i or higher (so that the agent is the one to stop
the game), and that when the agent tests higher strategies, his opponents play strategies i
or lower. In this case, only strategy i yields the agent his highest payoff. Second, it could

14We follow the convention that a sum whose lower limit exceeds its upper limit evaluates to 0.
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be that when the agent tests i, his opponent plays strategy k < i; when he tests strategies
between k and i− 1, his opponents play strategies less than k; and when he tests strategies
above i, his opponents play strategies less than or equal to k. In this case, strategy i is the
lowest strategy that achieves the optimal payoff, and so is chosen by the revising agent
under the min-if-tie rule. Similar logic, and accounting for the fact that player 2’s jth node
is followed by player 1’s ( j + 1)st node, leads to equation (3b).

We conclude this section with a simple observation about the backward induction
solution of Centipede under best experienced payoff dynamics.

Observation 2.1. Under the BEP(τall, κ, βmin) dynamic, the backward induction state ξ† is a rest
point.

Osborne and Rubinstein (1998) show that if all strategies are tested once and ties are
broken uniformly, then in a long Centipede game, stationarity requires that play is almost
never stopped at the initial node. Observation 2.1 shows that this conclusion depends
on the assumption that ties are broken uniformly. If instead ties are broken in favor
of the lowest-numbered strategy (or, alternatively, an agent’s current strategy), then the
backward induction state is a rest point. Even so, the analyses to follow will explain why
the backward induction state is not a compelling prediction of play even under these
tie-breaking rules.

3. Analysis of dynamics with one trial of each strategy

In this section we analyze the BEP(τall, 1, βmin) dynamic in Centipede. Since tie-breaking
rule βmin selects the optimal strategy that stops soonest, it is the tie-breaking rule that is
most favorable toward backward induction. Before proceeding, we review some standard
definitions and results from dynamical systems theory, and follow this with a simple
example.

Consider a C1 differential equation ξ̇ = V(ξ) defined on Ξ whose forward solutions
{x(t)}t≥0 do not leave Ξ. State ξ∗ is a rest point if V(ξ∗) = 0, so that the unique solution
starting from ξ∗ is stationary. Rest point ξ∗ is Lyapunov stable if for every neighborhood
O ⊂ Ξ of ξ∗, there exists a neighborhood O′ ⊂ Ξ of ξ∗ such that every forward solution that
starts in O′ is contained in O. If ξ∗ is not Lyapunov stable it is unstable, and it is repelling
if there is a neighborhood O ⊂ Ξ of ξ∗ such that solutions from all initial conditions in
O r {ξ∗} leave O.

Rest point ξ∗ is attracting if there is a neighborhood O ⊂ Ξ of ξ∗ such that all solutions
that start in O converge toξ∗. A state that is Lyapunov stable and attracting is asymptotically
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stable. In this case, the maximal (relatively) open set of states from which solutions
converge to ξ∗ is called the basin of ξ∗. If the basin of ξ∗ contains int(Ξ), we call ξ∗ almost
globally asymptotically stable; if it is Ξ itself, we call ξ∗ globally asymptotically stable.

The C1 function L : O → R+ is a strict Lyapunov function for rest point ξ∗ ∈ O if
L−1(0) = {ξ∗}, and if its time derivative L̇(ξ) ≡ ∇L(ξ)′V(ξ) is negative on Or {ξ∗}. Standard
results imply that if such a function exists, then ξ∗ is asymptotically stable.15 If L is a strict
Lyapunov function for ξ∗ with domain O = Ξ r {ξ†} and ξ† is repelling, then ξ∗ is almost
globally asymptotically stable; if the domain is Ξ, then ξ∗ is globally asymptotically stable.

Example 3.1. As a preliminary, we consider BEP(τ, 1, βmin) dynamics for the Centipede
game of length 2. Since each player has two strategies, all test-set rules τ have revising
agents test both of them. Focusing on the fractions of agents choosing to continue, we can
express the dynamics as

(4)
ẋ2 = y2 − x2,

ẏ2 = x2x1 − y2.

By way of interpretation, a revising agent in population 1 chooses to continue if his
opponent when he tests continue also continues. A revising agent in population 2 chooses
to continue if her opponent continues when she tests continue, and her opponent stops
when she tests stop.16

Writing 1 − x2 for x1 in (4) and then solving for the zeros, we find that the unique rest
point of (4) is the backward induction state: x†2 = y†2 = 0. Moreover, defining the function
L : [0, 1]2

→ R+ by L(x2, y2) = 1
2 ((x2)2 + (y2)2), we see that L−1(0) = {ξ†} and that

L̇(x2, y2) = x2ẋ2 + y2 ẏ2 = x2y2 − (x2)2 + y2x2 − y2(x2)2
− (y2)2 = −(x2 − y2)2

− y2(x2)2,

which is nonpositive on [0, 1]2 and equals zero only at the backward induction state. Since
L is a strict Lyapunov function for ξ† on Ξ, state ξ† is globally asymptotically stable. _

In light of this example, our analyses to come will focus on Centipede games of lengths
d ≥ 3.

3.1 Analytical results

As we know from Observation 2.1, the backward induction state ξ† of the Centipede
game is a rest point of the BEP(τall, 1, βmin) dynamic. Our first result shows that this rest

15See, e.g., Sandholm (2010b, Appendix 7.B).
16Compare the discussion after equation (3) and Example 3.3 below.
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point is always repelling.

Proposition 3.2. In Centipede games of lengths d ≥ 3, the backward induction state ξ† is repelling
under the BEP(τall, 1, βmin) dynamic.

The proof of Proposition 3.2, which is presented in Appendix A, is based on a somewhat
nonstandard linearization argument. While we are directly concerned with the behavior
of the BEP dynamics on the state space Ξ, it is useful to view equation (1) as defining
dynamics throughout the affine hull aff(Ξ) = {(x, y) ∈ Rs1+s2 :

∑
i∈S1 xi =

∑
j∈S2 y j = 1},

which is then invariant under (1). Vectors of motion through aff(Ξ) are elements of the
tangent space TΞ = {(z1, z2) ∈ Rs1+s2 :

∑
i∈S1 z1

i =
∑

j∈S2 z2
j = 0}. Note that TΞ is a subspace of

Rs1+s2 , and that aff(Ξ) is obtained from TΞ via translation: aff(Ξ) = TΞ + ξ†.
A standard linearization argument is enough to prove that ξ† is unstable. Let the

vector field V : aff(Ξ) → TΞ be defined by the right-hand side of (1). To start the proof,
we obtain an expression for the derivative matrix DV(ξ†) that holds for any game length
d. We then derive formulas for the d linearly independent eigenvectors of DV(ξ†) in the
subspace TΞ and for their corresponding eigenvalues. We find that d−1 of the eigenvalues
are negative, and one is positive. The existence of the latter implies that ξ† is unstable.

To prove that ξ† is repelling, we show that the hyperplane through ξ† defined by the
span of the set of d − 1 eigenvectors with negative eigenvalues supports the convex state
space Ξ at state ξ†. Results from dynamical systems theory—specifically, the Hartman-
Grobman and stable manifold theorems (Perko (2001, Sec. 2.7–2.8))—then imply that in
some neighborhood O ⊂ aff(Ξ) of ξ†, the set of initial conditions from which solutions
converge to ξ† is disjoint from Ξ r {ξ†}, and that solutions from the remaining initial
conditions eventually move away from ξ†.

The following example provides intuition for the instability of the backward induction
state; the logic is similar in longer games and for other specifications of BEP dynamics.

Example 3.3. In a Centipede game of length d = 4, writing out display (3) shows that the
BEP(τall, 1, βmin) dynamic is described by

ẋ1 = (y1)2
− x1, ẏ1 = (x2 + x3)(x1 + x2)2 + (x1)3

− y1,

ẋ2 = (y2 + y3)(y1 + y2) − x2, ẏ2 = x3 + x2x1(x1 + x2) − y2,(5)

ẋ3 = y3 + y2y1 − x3, ẏ3 = x2(x1)2 + x3(x1 + x2) − y3.

The linearization of this system at (x†, y†) has the positive eigenvalue 1 corresponding
to eigenvector (z1, z2) = ((−2, 1, 1), (−2, 1, 1)) (this is equation (15) with m ≡ d1 = 2 and
n ≡ d2 = 2). Thus at state (x, y) = ((1 − 2ε, ε, ε), (1 − 2ε, ε, ε)) with ε > 0 small, we have
(ẋ, ẏ) ≈ ((−2ε, ε, ε), (−2ε, ε, ε)).
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To understand why the addition of agents in both populations playing the cooperative
strategies 2 and 3 is self-reinforcing, we build on the discussion following equation (3).
Consider, for instance, component y3, which represents the fraction of agents in population
2 who continue at both decision nodes. The last expression in (5) says that a revising
population 2 agent switches to strategy 3 if (i) when testing strategy 3 she meets an
opponent playing strategy 2, and when testing strategies 1 and 2 she meets opponents
playing strategy 1, or (ii) when testing strategy 3 she meets an opponent playing strategy
3, and when testing strategy 2 she meets an opponent playing strategy 1 or 2. These events
have total probability ε(1 − ε) + ε(1 − 2ε)2

≈ 2ε. Since there are y3 = ε agents currently
playing strategy 3, outflow from this strategy occurs at rate ε. Combining the inflow and
outflow terms shows that ẏ3 ≈ 2ε − ε = ε. Analogous arguments explain the changes in
the values of the other components of the state. _

It may seem surprising that the play of a weakly dominated strategy—continuing by
the last mover at the last decision node—is positively reinforced at an interior population
state. This is possible because revising agents test each of their strategies against newly
drawn opponents: as just described, a revising population 2 agent will choose to continue
at both of her decision nodes if her opponent’s strategy when she tests strategy 3 is
more cooperative than her opponents’ strategies when she tests her own less cooperative
strategies.

Since the backward induction state is unstable, we next try to determine where in the
state space the dynamics may converge. As a start, we prove that except at the rest point
ξ†, motion from states on the boundary of the state space proceeds immediately into the
interior of the state space.

Proposition 3.4. In Centipede games of all lengths d ≥ 3, solutions to the BEP(τall, 1, βmin)
dynamic from every initial condition ξ ∈ bd(Ξ) r {ξ†} immediately enter int(Ξ).

The proof of Proposition 3.4, which is presented in Appendix B, starts with a simple
differential inequality (Lemma B.1) that lets us obtain explicit positive lower bounds on
the use of any initially unused strategy i at times t ∈ (0,T]. The bounds are given in terms
of the probabilities of test results that lead i to be chosen, and thus, backing up one step,
in terms of the usage levels of the opponents’ strategies occurring in those tests (equation
(20)). With this preliminary result in hand, we prove inward motion from ξ , ξ† by
constructing a sequence that contains all unused strategies, and whose kth strategy could
be chosen by a revising agent after a test result that only includes strategies that were
initially in use or that appeared earlier in the sequence.

Together, Propositions 3.2 and 3.4 imply that in Centipede games of length d ≥ 3,
the BEP(τall, 1, βmin) dynamic has an interior rest point. Our next result places strong
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bounds on the weights on the most cooperative strategies in any such rest point. For
any population state ξ = (x, y) and for k ∈ {0, . . . , d1

}, let x̄[k] = x[0] + · · · + x[k] be the mass
of population 1 agents who stop at their kth-to-last decision node or later. Likewise, for
` ∈ {0, . . . , d2

}, let ȳ[`] = y[0] + · · · + y[`].

Proposition 3.5. Let ξ = (x, y) be a rest point of the BEP(τall, 1, βmin) dynamic in Centipede other
than the backward induction state ξ†.

(i) If d is even, so that player 2 moves last, then ȳ[2] > .9657, x̄[2] > 1−10−4, and ȳ[3] > 1−10−16.
(ii) If d is odd, so that player 1 moves last, then x̄[2] > .9657, ȳ[2] > 1−10−4, and x̄[3] > 1−10−16.

The proposition implies that the probability that play in a random match leads to the
last five terminal nodes, namely ȳ[2]x̄[2], is at least .9656, and play is virtually guaranteed
to reach the last eight terminal nodes.

Proof. We consider the case in which d is even. We start by introducing three inequalities
that a rest point (x, y) must satisfy:

1 − x̄[k] ≤ (1 − ȳ[k])k+1,(6)

1 − ȳ[k+1] ≤ (1 − x̄[k])k+2,(7)

x̄[k] ≥
(
1 − (1 − ȳ[k+1])k+1

)
(1 − ȳ[k+1]).(8)

A necessary condition for a population 1 agent to choose a strategy outside of {[k], . . . , [0]}
is that when testing strategies in this set, he is never matched with a population 2 agent
playing a strategy in {[k], . . . , [0]}. This fact gives us inequality (6). Likewise, for a
population 2 agent not to choose a strategy in {[k + 1], . . . , [0]}, it is necessary that when
testing strategies in this set, she is never matched with a population 1 opponent playing
a strategy in {[k], . . . , [0]}; this gives us inequality (7). Finally, inequality (8) follows from
this observation: for a revising population 1 agent to choose a strategy in {[k], . . . , [0]}, it is
enough that both (i) when playing at least one such strategy, her match opponent chooses
a strategy in {[k + 1], . . . , [0]} and (ii) when playing strategy [k + 1], her opponent does not
choose a strategy in {[k + 1], . . . , [0]}. Inequality (8) can be also be written as

(9) 1 − x̄[k] ≤ (1 − ȳ[k+1])k+2 + ȳ[k+1].

Combining (7) and (9) and rearranging yields the inequality

(10)
(
(1 − ȳ[k+1])k+2 + y[k+1]

)k+2
+ y[k+1] − 1 ≥ 0.

When k = 0, the left-hand side of (10) is a polynomial whose real roots are 0 and r, with r
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close to but greater than .4301, and which is negative on (0, r) and positive on (r,∞). (This
r is the lone real root of the polynomial z3

− 2z2 + 3z − 1.) Thus any rest point (x, y) with
ȳ[1] , 0 satisfies ȳ[1] ≥ r > .4301. By Proposition 3.4, this requirement holds for every rest
point besides ξ†.

Now, applying (6) and (7) sequentially yields the inequalities

(11)

x̄[1] ≥ 1 − (1 − y[1])2
≥ 1 − (1 − r)2 > .6752,

ȳ[2] ≥ 1 − (1 − x[1])3
≥ 1 − (1 − r)6 > .9657,

x̄[2] ≥ 1 − (1 − y[2])3
≥ 1 − (1 − r)18 > 1 − 10−4,

ȳ[3] ≥ 1 − (1 − x[2])4
≥ 1 − (1 − r)72 > 1 − 10−16. �

Part of the intuition behind the proof of Proposition 3.5 is straightforward. Consider
an interior rest point ξ = (x, y) of the BEP(τall, 1, βmin) dynamic when d is even. Inequality
(6) says that if 1− ȳ[k] is small (i.e., if few population 2 players stop before [k]), then 1− x̄[k]

is even smaller (i.e., few population 1 players stop before [k]), since some test of a more
cooperative strategy will very likely lead to a high payoff. Likewise, by (7), if 1 − x̄[k] is
small then 1 − ȳ[k+1] is smaller still. These inequalities imply that any lower bound on ȳ[k]

will quickly propagate into much stronger lower bounds on x̄[k], ȳ[k+1], x̄[k+1], and so on (see
(11)). Initiating this chain of reasoning requires a less obvious step: we combine inequality
(7) with a weak bound (9) on 1 − x̄[k] that depends on ȳ[k+1] alone. This combination gives
us the initial inequality ȳ[1] ≥ .4301, which in turn leads to the strong bounds stated in the
proposition.

3.2 Results based on exact computations

Proposition 3.5 places strong lower bounds on the degree of cooperation arising at
any rest point other than the unstable backward induction state. To gain a more precise
understanding of the form and stability of such rest points, we turn to exact computations.
Because the dynamic (3) is a system of polynomials with rational coefficients, its zeros can
in principle be found by computing a Gröbner basis for the system. The Gröbner basis
is a new system of equations that has the same zeros as the original system, but can be
solved by backward substitution. Once the Gröbner basis has been obtained, polynomial
factoring and root finding algorithms can be used to identify its zeros, and hence the zeros
of the original system. Applying these techniques, which are described in detail in the
Online Appendix, leads to part (i) of the following result.

Proposition 3.6. In Centipede games of lengths 3 ≤ d ≤ 6,
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population p population q
[3] [2] [1] [0] [3] [2] [1] [0]

d = 3 .618034 .381966 .381966 .381966 .236068
d = 4 .113625 .501712 .384663 .337084 .419741 .243175
d = 5 .113493 .501849 .384658 .001462 .335672 .419706 .243160
d = 6 3.12 × 10−9 .113493 .501849 .384658 .001462 .335672 .419706 .243160

Table 1: “Exact” interior rest points ξ∗ = ξ∗(d) of the BEP(τall, 1, βmin) dynamic. p denotes the owner of the
penultimate decision node, q the owner of the last decision node.

(i) The BEP(τall, 1, βmin) dynamic has exactly two rest points: ξ†, and ξ∗ = ξ∗(d) ∈ int(Ξ).
(ii) The rest point ξ∗ is asymptotically stable.

Exact solutions can only be obtained for games of length at most 6 because of the com-
putational demands of computing the Gröbner bases. Two indications of these demands
are that when d = 6, the leading (univariate) polynomial from the Gröbner basis is of
degree 221, and a coefficient of one of the polynomials in the basis has 13,278 digits.

Table 1 reports the approximate values of the interior rest points ξ∗ = ξ∗(d), referring
to strategies using the last-to-first notation [k] introduced in Section 2.4. Evidently, the
masses on each strategy are nearly identical for games of lengths 4, 5, and 6, with nearly
all of the weight in both populations being placed on continuing to the end, stopping at
the last node, or stopping at the penultimate node.

In principle, it is possible to prove the local stability of the rest points ξ∗ = ξ∗(d)
using linearization. But since the components of ξ∗ are algebraic numbers, computing
the eigenvalues of DV(ξ∗) requires finding the exact roots of a polynomial with algebraic
coefficients, a computationally intensive problem. Fortunately, we can prove local stability
without doing so. Instead, we compute the eigenvalues of the matrix DV(ξ), where ξ is a
rational point that is very close to ξ∗, showing that these eigenvalues all have negative real
part. Proposition C.1 in Appendix C establishes an upper bound on the distances between
the eigenvalues of DV(ξ) and DV(ξ∗). Importantly, this bound can be evaluated without
having to compute the roots of a polynomial with algebraic coefficients or to invert a matrix
with algebraic components, as both of these operations quickly become computationally
infeasible. Combining these steps allows us to conclude that the eigenvalues of DV(ξ∗)
also have negative real part. For a detailed presentation of this argument, see Appendix
C.

The approximate eigenvalues of DV(ξ∗) are reported in Table 2. Note that the eigenval-
ues for games of length 5 and 6 are nearly identical, with the replacement of an eigenvalue
of −1 by a pair of complex eigenvalues that are very close to −1.
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d = 3 −1 ± .3820 −1
d = 4 −1.1411 ± .3277 i −.8589 ± .3277 i
d = 5 −1.1355 ± .3284 i −.8645 ± .3284 i −1
d = 6 −1.1355 ± .3284 i −.8645 ± .3284 i −1 ± 9.74 × 10−5 i

Table 2: Eigenvalues of the derivative matrices DV(ξ∗) of the BEP(τall, 1, βmin) dynamic.

3.3 Numerical results

Because exact methods only allow us to determine the rest points of the BEP(τall, 1, βmin)
dynamic in Centipede games of lengths d ≤ 6, we use numerical methods to study games
of lengths 7 through 20. We know from Proposition 3.5 that at any rest point besides
the backward induction state ξ†, the weight on strategies that stop before either player’s
third-to-last node is very small. This suggests that the presence of earlier nodes should
have little bearing on how the game is played.

Our numerical analysis shows that for game lengths 7 ≤ d ≤ 20 there are exactly two
rest points, the backward induction state ξ†, and an interior rest point ξ∗ = ξ∗(d). As Figure
2 illustrates, the form of the interior rest point follows the pattern from Table 1: regardless
of the length of the game, nearly all of the mass is placed on each population’s three most
cooperative strategies, and the weights on these strategies are essentially independent
of the length of the game. Precise numerical estimates of these rest points are provided
in Online Appendix IV, as are numerical estimates of the eigenvalues of the derivative
matrices DV(ξ∗). The latter are essentially identical to those presented in Table 2 for d = 6,
with the addition of an eigenvalue of ≈ −1 for each additional decision node.

These numerical results strongly suggest that the conclusions about rest points estab-
lished analytically for games of lengths d ≤ 6 continue to hold for longer games: there are
always exactly two rest points, the backward induction state ξ†, and a stable interior rest
point ξ∗ whose form barely varies with the length of the game.

The facts that the vertex ξ† is repelling, the interior rest point ξ∗ = ξ∗(d) is attracting,
and these are the only two rest points give us a strong reason to suspect that state ξ∗

attracts all solutions of the BEP(τall, 1, βmin) dynamic other than the stationary solution
at ξ†.17 To argue that ξ∗ is almost globally stable we introduce the candidate Lyapunov
function

17For there to be other solutions that did not converge to ξ∗ without the dynamics having another rest
point, the flow of the dynamics would need to have very special topological properties. For instance, in a
two-dimensional setting, this could occur if ξ∗ were contained in a pair of concentric closed orbits, the inner
repelling and the outer attracting.
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Figure 2: The stable rest point ξ∗ = ξ∗(d) of Centipede under the BEP(τall, 1, βmin) dynamic for game
lengths d = 3, . . . , 10 and d = 20. Stacked bars, from the bottom to the top, represent weights on strategy [0]

(continue at all decision nodes), [1] (stop at the last node), [2] (stop at the second-to-last node), etc. The
dashed line separates exact (d ≤ 6) and numerical (d ≥ 7) results.

(12) L(x, y) =

s1∑
i=2

(xi − x∗i )2 +

s2∑
j=2

(y j − y∗j )2.

In words, L(x, y) is the squared Euclidean distance of (x, y) from (x∗, y∗) if the points in the
state space Ξ are represented in Rd by omitting the first components of x and y.

The Gröbner basis techniques used in Section 3.2 are not suitable for establishing that
L is a Lyapunov function. For the Centipede game of length d = 3, we are able to verify
that L is a Lyapunov function using an algorithm from real algebraic geometry called
cylindrical algebraic decomposition (Collins (1975)). However, exact implementations of this
algorithm fail to terminate in longer games.

We therefore verify numerically that L is a Lyapunov function. For games of lengths
4 through 20, we chose one billion (109) points from the state space Ξ uniformly at
random, and evaluated a floating-point approximation of L̇ at each point. In all instances,
the approximate version of L̇ evaluated to a negative number. This numerical procedure
covers the state space fairly thoroughly for the game lengths we consider,18 and so provides
strong numerical evidence that the interior rest point ξ∗ is an almost global attractor.

18By a standard combinatoric formula, the number of states in a grid in Ξ = X × Y with mesh 1
m is(m+s1

−1
m

)(m+s2
−1

m
)
. Applying this formula shows for a game of length 10, 109 is between the numbers of states

in grids in Ξ of meshes 1
17 (since

(22
17
)2

= 693,479,556) and 1
18 (since

(23
18
)2

= 1,132,255,201). For a game of length
15, the comparable meshes are 1

10 and 1
11 , and for length 20, 1

7 and 1
8 .
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3.4 Other specifications of the dynamics

To test the robustness of the results above, we repeat the analyses for other specifica-
tions of BEP(τ, 1, β) dynamics. In addition to the test-all rule τall, we also studied a test-set
rule under which the revising agent only considers his current strategy and one other
strategy (τtwo), as well as a rule under which the revising agent only considers his current
strategy and one adjacent strategy (τadj). The qualitative behavior under these test-set
rules is similar to that under τall. The differences worth mentioning are that stable play is
concentrated on a larger number of strategies (e.g., nine strategies in total have mass of
at least .01 under BEP(τtwo, 1, βmin), and that the rate of decay of the weights on strategies
that stop earlier is not as severe as under τall. The intuition here is simple. Under test-all,
a revising agent will try out all of his most cooperative strategies, providing many oppor-
tunities for some such strategy to perform best; if instead only two strategies are tested at
a time, the selective pressure against less cooperative strategies is weaker.

In addition, we also considered alternative tiebreaking rules: stick/min-if-tie, which
chooses the agent’s current strategy if it is optimal, and chooses the lowest-numbered
strategy otherwise, and uniform-if-tie, which randomizes uniformly among the optimal
strategies (as in Osborne and Rubinstein (1998) and Sethi (2000)). As we noted in Section
2.5, uniform tie-breaking implies that the backward induction state ξ† is not a rest point,
rendering a stability analysis of this rest point unnecessary. In other respects, alternate
choices of tiebreaking rule have little qualititative impact on behavior.

In summary, the results presented in previous sections are highly robust to alternative
specifications of the dynamics.

4. Larger numbers of trials

The analysis thus far has focused on cases in which agents test each strategy in their
test sets exactly once. We now examine aggregate behavior when each strategy is subject
to larger numbers of trials κ, focusing on BEP(τall, κ, βmin) dynamics.

4.1 Instability and stability of the backward induction state

Proposition 3.2 shows that the backward induction state ξ† is a repellor under the
BEP(τall, κ, βmin) dynamic with κ = 1. The following proposition shows that ξ† remains
unstable as long as the number of trials κ is less than the length of the game d, and then
becomes stable for larger numbers of trials. The statement is complicated slightly by the
dependence of the crossover point on whether d is even or odd.
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Proposition 4.1. Under the BEP(τall, κ, βmin) dynamic in the Centipede game of length d, the
backward induction state ξ† is unstable if κ ≤ 2bd

2c and is asymptotically stable otherwise.

Like those of the earlier stability analyses, the proof of Proposition 4.1, which is pre-
sented in Appendix D, is based on linearization. The key observation is that linearizations
of BEP dynamics around pure rest points are driven by match results in which exactly
one out of all κsp match partners plays a strategy different from the equilibrium strategy.
We show that if κ ≤ d − 1 (for d even), or κ ≤ d (for d odd), there is enough sensitivity
to perturbations of the state to ensure the existence of an unstable manifold through ξ†;
however, unlike in the κ = 1 case, ξ† need not be a repellor. Conversely, if these inequal-
ities are violated, strategy 1 ∈ S1 earns the highest total payoff after any matching with
exactly one discrepant opponent. This insensitivity of population 1’s behavior to small
changes in population 2’s behavior ensures local stability.

In order to assess the practical relevance of the stability of the backward induction state
for larger numbers of trials, we use numerical analysis to estimate the basin of attraction
of ξ†, and to determine the position of the interior saddle point of the dynamics, which
lies on the manifold separating the basin of ξ† from the basin of the main attractor. We
focus for tractability on games of length d = 4 and numbers of trials κ ≤ 100. Details of
these analyses are presented in Online Appendices V and VI.

We have two main findings from this numerical analysis. First, the basin of attraction
is always minuscule, with volumes always smaller than 0.01% of the total volume of
the state space Ξ. Second, ξ† is almost completely nonrobust to changes in behavior in
population 1. Evidence for this lies in the position of the saddle points, which have more
than 99.8% of population 1 agents choosing strategy 1, indicating that changes in the
behavior of 0.2% of population 1 agents are enough to disrupt the stability of ξ†. Thus
the exact stability analysis of the backward induction state for larger numbers of trials is
undercut by a thorough numerical analysis of the dynamics in the vicinity of that state.

4.2 Persistence of the stable interior rest point

When agents test their strategies thoroughly, the distributions of opponents’ choices
they face when testing each strategy will come to resemble the current distribution of play
in the opposing population. Since agents choose the strategy whose total payoff during
testing was highest, this suggests that the rest points of the resulting dynamics should
approximate Nash equilibria. Indeed, when agents possess exact information, so that play
adjusts according to the exact best response dynamic (Gilboa and Matsui (1991), Hofbauer
(1995)), results of Xu (2016) imply that every solution trajectory converges to the set of
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Nash equilibria; in Centipede, all Nash equilibria entail all population 1 agents stopping
immediately.

While the intuition suggested above is correct for large enough numbers of trials, it
is nevertheless the case that stable cooperative behavior can persist when the number of
trials of each strategy is substantial. To illustrate this, we consider play in the Centipede
game of length d = 4 under the BEP(τall, κ, βmin) dynamic. Figures 3 and 4 present the
stable rest points of this dynamic for numbers of trials κ up to 50, which we computed
using numerical methods. While increasing the number of trials shifts mass toward
uncooperative strategies, it is clear from the figures that this shifting takes place gradually:
even with rather thorough testing, significant levels of cooperation are still maintained.
We note as well that the fraction of population 2 agents who play the weakly dominated
strategy [0] (always continue) becomes fixed between 7% and 6.5% once κ ≥ 15, even as
the fraction of population 1 agents who play strategy [0] remains far from 0 (specifically,
between 28% and 18%).

While surprising at first glance, these facts can be explained by considering both
the expectations and the dispersions in the payoffs obtained through repeated trials of
each strategy. As an illustration, consider the stable rest point when κ = 32, namely
ξ∗ = (x∗, y∗) ≈ ((.2140, .5738, .2122), (.6333, .3010, .0657)). Let Π j be a random variable
representing the payoff obtained by a population 2 agent who plays strategy j in a single
random match at this state. By equation (2) (or Figure 1), the expected payoffs to this
agent’s three strategies are

E(Π1) = (0, 3, 3)·x∗= 2.3580, E(Π2) = (0, 2, 5)·x∗= 2.2086, E(Π3) = (0, 2, 4)·x∗= 1.9964.

From this we anticipate that the strategy weights in population 2 satisfy y∗1 > y∗2 > y∗3 .
To explain why these weights take the values they do, we also need to know how

dispersed the payoffs from testing each strategy are. We thus compute the variances of
the single-test payoffs Π j:

Var(Π1) = 1.5138, Var(Π2) = 2.7223, Var(Π3) = 1.7048.

Using these calculations and the central limit theorem, we find that the difference be-
tween the average payoffs from 32 tests of strategy 3 and 32 tests of strategy 2 is approx-
imately normally distributed with mean E(Π3) − E(Π2) = −.2122 and standard deviation√

(Var(Π3) + Var(Π2))/32 ≈ .3720. The latter statistic is commensurate with the former.
Thus the weakly dominated strategy 3 yields a higher total payoff than the dominating
strategy 2 with approximate probability P(Z ≥ .57) ≈ .28, and so is not a rare event.
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Figure 3: The stable interior rest point of the BEP(τall, κ, βmin) dynamic in the Centipede game of length
d = 4, κ = 1, . . . , 50. Stacked bars, from the bottom to the top, represent weights on strategies [0], [1] and [2].
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Figure 4: The stable interior rest point in Centipede of length d = 4 under BEP(τall, κ, βmin) dynamics for
κ = 1, . . . , 34 trials of each tested strategy. Lighter shading corresponds to larger numbers of trials. Dashed

lines represent boundaries of best response regions.

Likewise, evaluating the appropriate multivariate normal integrals shows that the proba-
bilities of strategies 1, 2, and 3 yielding the highest total payoff are approximately .61, .32,
and .07, figures which accord fairly well with the components of y∗.

As the number of trials κ becomes larger, greater averaging reduces the variation in
each strategy’s payoffs per trial. At the same time, increasing κ increases the weight x∗1
on stopping immediately at the expense of population 1’s other two strategies, reducing
the differences in the expected payoffs of population 2’s strategies. This explains why
the strategy weights in population 2 do not vary very much as κ increases, and why the
weight on the weakly dominated strategy hardly varies at all.

4.3 Convergence to cycles

Figure 3 does not record rest points for certain numbers of trials above 34. For these
values of κ, the population state does not converge to a rest point. Instead, our numerical
analyses indicate that for all κwith empty entries in Figure 3 and all κ between 51 and 100,
the BEP(τall, κ, βmin) dynamic converges to a periodic orbit. Figure 5 presents the cycles
under the BEP(τall, κ, βmin) dynamics for κ = 50, 100, and 200. In all three cases, we observe
substantial levels of cooperative play in population 1 over the course of the cycle, with
the fraction of the population choosing to continue at the initial node varying between .50
and .83 for κ = 50, between .28 and .70 for κ = 100, and between .16 and .45 for κ = 200.
These examples illustrate that cooperative behavior can persist even when agents have
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substantial amounts of information about opponents’ play.
From a methodological point of view, the existence of attracting limit cycles under BEP

dynamics suggests that solution concepts like S(k) equilibrium and logit equilibrium that
are motivated as steady states of dynamic disequilibrium processes should be applied
with some caution. Existence results for such solution concepts can generally be proved
by appeals to suitable fixed point theorems. But the fact that static solutions exist need
not imply that any are stable, and it may happen that no static solution provides a good
prediction of the behavior of the underlying dynamic process.

5. Conclusion

In this paper, we have introduced a class of game dynamics built on natural assump-
tions about the information agents obtain when revising, and have shown that these
dynamics lead to cooperative behavior in the Centipede game. One key feature of the
agents’ revision process is that conditional on the current population state, the experi-
enced payoffs to each strategy are independent of one another. This allows cooperative
strategies with suboptimal expected payoffs to be played with nonnegligible probabilities,
even when the testing of each strategy involves substantial numbers of trials. The use of
any such strategy increases the expected payoffs of other cooperative strategies, creating
a virtuous circle that sustains cooperative play.

Appendix

A. Proof of Proposition 3.2

A.1 Generalities

Letting s = s1 + s2, we denote the tangent space of the state space Ξ = X × Y by
TΞ = TX × TY = {(z1, z2)′ ∈ Rs :

∑
i∈S1 z1

i = 0 and
∑

j∈S2 z2
j = 0}, and we denote the affine

hull of Ξ by aff(Ξ) = TΞ + ξ†. Writing our dynamics as

(D) ξ̇ = V(ξ),

we have V : aff(Ξ) → TΞ, and so DV(ξ)z ∈ TΞ for all ξ ∈ Ξ and z ∈ TΞ. We can thus
view DV(ξ) as a linear map from TΞ to itself, and the behavior of the dynamics in the
neighborhood of a rest point is determined by the eigenvalues and eigenvectors of this
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(i) κ = 50

(ii) κ = 100

(iii) κ = 200

Figure 5: Stable cycles in Centipede of length d = 4 under BEP(τall, κ, βmin) dynamics for κ = 50, 100, and
200. Lighter shading represents faster motion. The small circles represent the unstable interior rest points.

For κ = 50 and 100, shapes synchronize positions along the cycle.
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linear map. The latter are obtained by computing the eigenvalues and eigenvectors of the
product matrixΦDV (ξ)Φ, where V : Rs

→ Rs is the natural extension of V to Rs, andΦ
is the orthogonal projection of Rs onto TΞ, i.e., the block diagonal matrix with diagonal
blocks I − 1

s1 11′ ∈ Rs1
×s1 and I − 1

s2 11′ ∈ Rs2
×s2 , where 1 = (1, . . . , 1)′. Since V maps Ξ into

TΞ, the projection is only needed when there are eigenspaces of DV(ξ) that intersect both
the set TΞ and its complement.

We prove that the backward induction state ξ† is a repellor using the following ar-
gument. Computing the eigenvalues and eigenvectors of DV(ξ†) as described above, we
find that ξ† is a hyperbolic rest point, meaning that all of the eigenvalues have nonzero real
part.

The linearization of the dynamic (D) at rest point ξ† is the linear differential equation

(L) ż = DV(ξ†)z

on TΞ. The stable subspace Es
⊆ TΞ of (L) is the span of the real and imaginary parts of

the eigenvectors and generalized eigenvectors of DV(ξ†) corresponding to eigenvalues
with negative real part. The unstable subspace Eu

⊆ TΞ of (L) is defined analogously. The
basic theory of linear differential equations implies that solutions to (L) on Es converge to
the origin at an exponential rate, that solutions to (L) on Eu diverge from the origin at an
exponential rate, and that the remaining solutions approach Eu and then diverge from the
origin at an exponential rate.

Let As = Es + ξ† and Au = Eu + ξ† denote the affine spaces that are parallel to Es and Eu

and that pass through ξ†. In Section A.2, we prove that under the BEP(τall, 1, βmin) dynamic,
the dimensions of Es and Eu are d − 1 and 1, and that As is a supporting hyperplane to Ξ

at ξ†.
Combining these facts with fundamental results from dynamical systems theory lets

us complete the proof that ξ† is a repellor. By the Hartman-Grobman theorem (Perko (2001,
Section 2.8)), there is a homeomorphism h between a neighborhood of ξ† in aff(Ξ) and
a neighborhood of 0 in TΞ that maps solutions of (D) to solutions of (L). By the stable
manifold theorem (Perko (2001, Section 2.7)), there is an invariant stable manifold Ms

⊂ aff(Ξ)
of dimension dim(Es) = d − 1 that is tangent to As at ξ† such that solutions to (D) in
Ms converge to ξ† at an exponential rate. Combining these results shows that there is
a neighborhood O ⊂ aff(Ξ) of ξ† with these properties: O ∩ Ξ ∩ Ms = {ξ†}; the initial
conditions in O from which solutions converge exponentially quickly to ξ† are those in
O∩Ms; and solutions from initial conditions in (O∩Ξ)r {ξ†} eventually move away from
ξ†. Thus the properties stated in the previous paragraph imply that state ξ† is a repellor
of the dynamic (D) on Ξ.
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A.2 Computation of eigenvalues and eigenvectors

Starting from formula (3) and using the notations m ≡ d1 = s1
− 1 and n ≡ d2 = s2

− 1,
it is easy to verify that under the BEP(τall, 1, βmin) dynamic,

DV (ξ†) =



−1 0 · · · 0 m + 1 1 · · · 1

0 −1 . . .
... 0 1 · · · 1

...
. . . . . . 0

...
...

. . .
...

0 · · · 0 −1 0 1 · · · 1
n + 1 1 · · · 1 −1 0 · · · 0

0 1 · · · 1 0 −1 . . .
...

...
...

. . .
...

...
. . . . . . 0

0 1 · · · 1 0 · · · 0 −1


Write δi

∈ Rs and ε j
∈ Rs for the standard basis vectors corresponding to strategies i ∈ S1

and j ∈ S2, respectively. For d ≥ 3, the eigenvalues of DV(ξ†) with respect to TΞ and the
bases for their eigenspaces are as follows:

−1,
{
δ2
− δi : i ∈ {3, . . . ,m + 1}

}
∪

{
ε2
− ε j : j ∈ {3, . . . ,n + 1}

}
;(13)

−1 −
√

mn,
{
(
√

mn,−
√

n/m, . . . ,−
√

n/m | −n, 1, . . . , 1)′
}

; and(14)

−1 +
√

mn,
{
(−
√

mn,
√

n/m, . . . ,
√

n/m | −n, 1, . . . , 1)′
}
.(15)

The eigenvectors in (13) and (14) span the stable subspace Es of the linear equation (L).
The normal vector to Es is

z⊥ =

(
−

n + 1
m + 1

√
m
n
,

n + 1
(m + 1)

√
mn

, . . . ,
n + 1

(m + 1)
√

mn

∣∣∣∣ −1,
1
n
, . . . ,

1
n

)′
.

This vector satisfies

(z⊥)′(δi
− δ1) =

n + 1
√

mn
> 0 for i ∈ S1 r {1} and(16)

(z⊥)′(ε j
− ε1) =

n + 1
n

> 0 for j ∈ S2 r {1}.(17)

The collection of vectors {δi
− δ1 : i ∈ S1

} ∪ {ε j
− ε1 : j ∈ S2

} describes the motions along all
edges of the convex set Ξ emanating from state ξ†. Thus the fact that their inner products
with z⊥ are all positive implies that the translation of Es to ξ† is a hyperplane that supports
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Ξ at ξ†. Since the remaining eigenvalue, from (15), is positive, the arguments from the
start of the section allow us to conclude that ξ† is a repellor.

B. Proof of Proposition 3.4

The following differential inequality will allow us to obtain simple lower bounds on
the use of initially unused strategies. In all cases in which we apply the lemma, v(0) = 0.

Lemma B.1. Let v : [0,T]→ R+ satisfy v̇(t) ≥ a(t) − v(t) for some a : [0,T]→ R+. Then

(18) v(t) ≥ e−t

(
v(0) +

∫ t

0
es a(s) ds

)
for all t ∈ [0,T].

Proof. Clearly v(t) = v(0) +
∫ t

0
v̇(s) ds ≥ v(0) +

∫ t

0
(a(s) − v(s)) ds. The final expression is

the time t value of the solution to the differential equation v̇(s) + v(s) = a(s) with initial
condition v(0). Using the integrating factor es to solve this equation yields the right-hand
side of (18). �

For the analysis to come, it will be convenient to work with the set S = S1
∪ S2 of

all strategies from both populations, and to drop population superscripts from notation
related to the state—for instance, writing ξi rather than ξp

i .
We use Lemma B.1 to prove inward motion from the boundary under BEP dynamics

in the following way. Write ξ̇i = ri(ξ) − ξi, where ri(ξ) is the polynomial appearing in the
formula (1) for the BEP(τ, 1, β) dynamic. Let {ξ(t)}t≥0 be the solution to the dynamic with
initial condition ξ(0). Let S0 = supp(ξ(0)) and Q = min{ξh(0) : h ∈ S0}, and, finally, let
S1 = {i ∈ S r S0 : ri(ξ(0)) > 0} and R = 1

2 min{rk(ξ(0)) : rk(ξ(0)) > 0}.
By the continuity of (1), there is a neighborhood O ⊂ Ξ of ξ(0) such that every χ ∈ O

satisfies χh > Q for all h ∈ S0 and χ̇i ≥ R for all i ∈ S1 . And since (1) is smooth, there is a
time T > 0 such that ξ(t) ∈ O for all t ∈ [0,T]. Thus applying Lemma B.1 shows that

(19) ξi(t) ≥ R(1 − e−t) for all t ∈ [0,T] and i ∈ S1.

Now let S2 be the set of j < S0 ∪ S1 for which there is a term of polynomial r j whose
factors all correspond to elements of S0 or S1. If this term has a factors in S0, b factors in
S1, and coefficient c, then the foregoing claims and Lemma B.1 imply that

(20) ξ j(t) ≥ c Qa e−t
∫ t

0
es(R(1 − e−s))b ds for all t ∈ [0,T].
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Proceeding sequentially, we can obtain positive lower bounds on the use of any strategy
for times t ∈ (0,T] by considering as-yet-unconsidered strategies k whose polynomials rk

have a term whose factors all correspond to strategies for which lower bounds have
already been obtained. Below, we prove that solutions to the BEP(τall, 1, βmin) dynamic
from states ξ(0) , ξ† immediately enter int(Ξ) by showing that the strategies in S r S0 can
be considered in a sequence that satisfies the property just stated.

To proceed, we use the notations i[1] and i[2] to denote the ith strategies of players 1 and
2. We also introduce the linear order ≺ on S defined by 1[1]

≺ 1[2]
≺ 2[1]

≺ 2[2]
≺ 3[1]

≺ . . . ,
which arranges the strategies according to how early they stop play in Centipede.

Proof of Proposition 3.4. Fix an initial condition ξ(0) , ξ†. We can sequentially add all
strategies in S r S0 in accordance with the property above as follows:

(I) First, we add the strategies {i ∈ S rS0 : i ≺ max S0} in decreasing order. At the point
that i has been added, i’s successor h has already been added, and strategy i is the unique
best response when the revising agent tests all strategies against opponents playing h. Let
S I denote the set of strategies added during this stage. The assumption that ξ(0) , ξ†

implies that S0 ∪ S I contains 1[1], 1[2], and 2[1].
(II) Second, we add the strategies j ∈ S2r(S0∪S I). We can do so because j is the unique

best response when it is tested against 2[1] and all other strategies are tested against 1[1].
(III) Third, we add the strategies k ∈ S1r (S0∪S I). We can do so because k is the unique

best response when it is tested against 2[2] and other strategies are tested against 1[2]. �

C. Proof of Proposition 3.6(ii)

The interior rest pointξ∗ of the dynamic ẋ = V(x) is locally stable if all eigenvalues of the
derivative matrix DV(ξ∗) have negative real part. Since each entry of the derivative matrix
DV (ξ∗) is a polynomial with many terms that is evaluated at a state whose components
are algebraic numbers, it is not feasible to compute its eigenvalues exactly. We circumvent
this problem by computing the eigenvalues of the derivative matrix at a nearby rational
state ξ, and making use of a bound on the distances between the eigenvalues of the two
matrices. This bound is established in Proposition C.1.

As in Appendix A, let s = s1 + s2 = d + 2, let ξ̇ = V(ξ), V : aff(Ξ) → TΞ denote an
instance of the BEP dynamics, and let V : Rs

→ Rs denote the natural extension of V to
Rs. Observe that if DV (ξ) is diagonalizable, then so is DV(ξ), and all eigenvalues of the
latter are eigenvalues of the former. To state the proposition, we write S = S1

∪ S2 and
omit population superscripts to define
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(21) ∆ = max
i∈S

max
k∈S

∑
j∈S

∂2Vi

∂ξ j∂ξk
(1, . . . , 1 | 1, . . . , 1).

Proposition C.1. Suppose that DV (ξ) is (complex) diagonalizable with DV (ξ) = Q diag(λ)Q−1,
and let λ∗ be an eigenvalue of DV (ξ∗). Then there is an eigenvalue λi of DV (ξ) such that

(22)
∣∣∣λ∗ − λi

∣∣∣ < 2∆

ss/2−1

tr(Q∗Q)s/2

|det(Q) |

∑
k∈S

|ξk − ξ
∗
k |.

The eigenvalue perturbation theorem (24) that begins the proof of the proposition
bounds the distances between the eigenvalues of DV (ξ∗) and DV (ξ), but neither term on
its right-hand side is feasible to compute. The second paragraph of the proof provides a
bound on the condition number κ∞(Q) that does not require the computation of the inverse
of the (algebraic-valued) eigenvector matrix Q. The third paragraph provides a bound
on the norm of DV (ξ) −DV (ξ∗), which is needed because numerically evaluating of the
entries of DV (ξ∗) with guaranteed precision is computationally infeasible. Two further
devices that we employ to improve the bound and speed its computation are described
after the proof of the proposition.

Proof. For M ∈ Rs×s, let

(23) |||M|||∞ = max
1≤i≤s

s∑
j=1

|Mi j|.

denote the maximum row sum norm of M. Let κ∞(Q) = |||Q|||∞ |||Q−1
|||∞ be the condition

number of Q with respect to norm (23). The following eigenvalue perturbation theorem
(Horn and Johnson (2013, Observation 6.3.1)) follows from the Geršgorin disk theorem
and the submultiplicativity of matrix norms:

(24)
∣∣∣λ∗ − λi

∣∣∣ ≤ κ∞(Q) |||DV (ξ) −DV (ξ∗)|||∞.

To bound κ∞(Q), let |||M|||2 denote the spectral norm of M (i.e., the largest singular
value of M), and let κ2(Q) = |||Q|||2 |||Q−1

|||2 be the condition number of Q with respect to
this norm. Since the maximum row sum and spectral norms differ by a factor of at most
√

s (Horn and Johnson (2013, Problem 5.6.P23)), it follows that

(25) κ∞(Q) ≤ sκ2(Q).

Also, Guggenheimer et al. (1995) (see also Merikoski et al. (1997)) show that
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(26) κ2(Q) <
2

|det(Q) |

(
tr(Q∗Q)

s

)s/2

.

To bound the final expression in (24), note that by construction, each component of the
BEP dynamics ẋ = V (x) is the difference between a sum of monomials in the components
of ξ with positive coefficients and a linear term. Thus the second derivatives of Vi(ξ) are
sums of monomials with positive coefficients. Since every component of every state ξ ∈ Ξ

is at most 1, we therefore have

(27) max
ξ∈Ξ

∣∣∣∣∣∣ ∂2Vi

∂ξ j∂ξk
(ξ)

∣∣∣∣∣∣ ≤ ∂2Vi

∂ξ j∂ξk
(1, . . . , 1 | 1, . . . , 1).

Thus the fundamental theorem of calculus, (27), and (21) imply that

|||DV (ξ) −DV (ξ∗)|||∞ ≤ max
i∈S

∑
j∈S

∑
k∈S

∂2Vi

∂ξ j∂ξk
(1, . . . , 1 | 1, . . . , 1) × |ξk − ξ

∗
k |

≤ ∆
∑
k∈S

|ξk − ξ
∗
k |.(28)

Combining inequalities (24), (25), (26), and (28) yields inequality (22). �

When applying Proposition C.1, one can choose Q to be any matrix of eigenvectors
of DV (ξ). Guggenheimer et al. (1995) suggest that choosing the eigenvectors to have
Euclidean norm 1 (which if done exactly makes the expression in parentheses in (26)
equal 1) leads to the lowest bounds. We apply this normalization in the final step of our
analysis.

To use this bound to establish the stability of the interior rest point ξ∗, we choose a
rational point ξ close to ξ∗, compute the eigenvalues of the derivative matrix DV(ξ), and
evaluate the bound from Proposition C.1. The eigenvalues of DV(ξ) all have negative real
part so long as ξ is reasonably close to ξ∗.

If ξ is close enough to ξ∗ that the bound is smaller than the magnitude of the real
part of any eigenvalue of DV(ξ), we can conclude that the eigenvalues of DV(ξ∗) all have
negative real part, and hence that ξ∗ is asymptotically stable.

Selecting state ξ involves a tradeoff: choosing ξ closer to ξ∗ reduces the bound, but
doing so also leads the components of ξ to have larger numerators and denominators,
which slows the computation of the bound significantly. In all cases, we are able to choose
ξ satisfactorily and to conclude that ξ∗ is asymptotically stable. For further details about
how the computations are implemented, see the online appendix.
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D. Proof of Proposition 4.1

Letting K = {1, . . . , κ}, we can write the population 1 equations of the BEP(τall, κ, βmin)
dynamic as

(29) ẋi =
∑

r : S1×K→S2

 ∏
`∈S1, λ∈K

yr`λ

 1
[
i = min

(
argmax

k∈S1

π1
k(r)

)]
− xi, where π1

k(r) =

κ∑
m=1

Akrkm .

The result function (`, λ) 7→ r`λ specifies the strategy in S2 played by an agent’s match
partner during the λth test of strategy ` for all ` ∈ S1 and λ ∈ K. The second piece of (29)
specifies the probability of a given result, and the third piece indicates whether strategy i
is the minimal optimal strategy for this result.

If there are two or more occurrences of strategies from S2 other than 1, then all partial
derivatives of the product in (29) equal 0. Thus for the purposes of computing the Jacobian,
we need only consider results in which there are 0 or 1 match partners playing strategies
other than strategy 1 ∈ S2. These results comprise the following possibilities:

(i) If all match partners play strategy 1 ∈ S2, then strategy 1 ∈ S1 earns total payoff

κ · 0 and all other strategies earn total payoff κ · (−1), so strategy 1 has the best
experienced payoff.

(ii) If the lone match against another strategy j ∈ S2 r {1} occurs when the revising
agent plays strategy 1 ∈ S1, then total payoffs are as above, and strategy 1 has the
best experienced payoff.

(iii) If the lone match against another strategy occurs when the revising agent plays
strategy i ∈ S1 r {1}, and if this match occurs against an opponent playing strategy
j ∈ S2 r {1}, then (using the payoffs Ai j defined in (2)) strategy 1 is the minimal
strategy earning the best experienced payoff if

κ · 0 ≥ (κ − 1) · (−1) +

2i − 2 if i ≤ j,

2 j − 3 if i > j;

otherwise, strategy i uniquely obtains the best experienced payoff.
Accounting for all of these possibilities, including the fact that the matches in cases (ii)
and (iii) can occur during any of the κ tests of the strategy in question, we have
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(30a)

ẋ1 = (y1)κs1
+ κ(y1)κs1

−1

 s2∑
j=2

y j +

s1∑
i=2

 i−1∑
j=2

y j12 j−2≤κ +

s2∑
j=i

y j12i−1≤κ


 − x1 + O((y−1)2),

ẋi = κ(y1)κs1
−1

 i−1∑
j=2

y j12 j−3≥κ +

s2∑
j=i

y j12i−2≥κ

 − xi + O((y−1)2),

where y−1 =
∑s2

j=2 y j and i ∈ S1 r {1}.
Turning to population 2, the test results with 0 or 1 match against opponents playing

strategies other than 1 ∈ S1 comprise these possibilities:
(i) If all match partners play strategy 1 ∈ S1, then all strategies earn total payoff κ · 0,

so strategy 1 is the minimal strategy earning the best experienced payoff.
(ii) If the lone match against another strategy occurs when the revising agent plays

strategy j ∈ S2, then strategy j earns a positive total payoff and other strategies earn
total payoff 0, so strategy j has the best experienced payoff.

Accounting for both possibilities, we obtain

(30b)

ẏ1 = (x1)κs2
+ κ(x1)κs2

−1
s1∑

i=2

xi − y1 + O((x−1)2),

ẏ j = κ(x1)κs2
−1

s1∑
i=2

xi − y j + O((x−1)2),

where x−1 =
∑s1

i=2 xi and j ∈ S1 r {1}.
Taking the derivative of (30) at state ξ†, we obtain the following matrix. (We write

this matrix for the case of d even, so that s1 = s2; roughly speaking, the case of d odd
corresponds to removing the final column.)
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(31) DV (ξ†) =



−1 0 · · · · · · 0 κs1 + · · · · · · +

0 −1 . . . . . .
... 0 κ12i−2≥κ · · · · · · κ12i−2≥κ

...
. . . . . . . . .

...
... κ12 j−3≥κ

. . . . . .
...

...
. . . . . . . . . 0

...
...

. . . . . .
...

0 · · · · · · 0 −1 0 κ12 j−3≥κ · · · κ12 j−3≥κ κ12i−2≥κ

κs2 κ · · · · · · κ −1 0 · · · · · · 0

0 κ · · · · · · κ 0 −1 . . .
...

...
...

...
. . . . . .

...
...

. . . . . .
... 0

...
...

. . . . . .
...

...
. . . . . . . . . 0

0 κ · · · · · · κ 0 · · · 0 0 −1



.

Each + above represents the number that makes the column sum in the block equal κs1.
If all indicator functions in the upper-right block of DV (ξ†) equal 0, then each + in

(31) equals κs1, implying that this block is the zero operator on TY. In this case (31) acts
as a block triangular matrix on TΞ, and so its lone eigenvalue with respect to TΞ is −1,
implying that ξ† is stable.

To check that the indicators are all 0 when d is even, it is enough to consider the
indicator for entry j = i = s2

≡
1
2d + 1, which is 0 if and only if κ ≥ d + 1. When d is odd, it

is enough to check the indicator for entry j = i = s1
− 1 ≡ 1

2 (d + 1), which is 0 if and only if
κ ≥ d. We conclude that ξ† is asymptotically stable in these cases.

To show that ξ† is unstable in the remaining cases (when κ ≥ 2 and d ≥ 3), write

χκi j =

12i−2≥κ if i ≤ j,

12 j−3≥κ, if i > j,
χκiΣ =

s2∑
j=2

χκi j, and χκΣΣ =

s1∑
i=2

s2∑
j=2

χκi j

for i, j ≥ 2. A straightforward calculation shows that λ = κ
√
χκ

ΣΣ
− 1 is an eigenvalue of

DV (ξ†) corresponding to eigenvector

z = (−χκΣΣ, χ
κ
2Σ, . . . , χ

κ
s1Σ
| −(s2

− 1)
√
χκ

ΣΣ
,
√
χκ

ΣΣ
, . . . ,

√
χκ

ΣΣ
).

Since κ ≥ 2, λ is positive whenever at least one of the indicators in DV (ξ†) equals 1.
Combining this with the previous argument, we conclude that ξ† is unstable whenever it
is not asymptotically stable.

–36–



References

Akritas, A. G. (2010). Vincent’s theorem of 1836: Overview and future research. Journal of
Mathematical Sciences, 168:309–325.

Basu, K. (1994). The traveler’s dilemma: Paradoxes of rationality in game theory. American
Economic Review Papers and Proceedings, 84:391–395.

Ben-Porath, E. (1997). Rationality, Nash equilibrium and backwards induction in perfect-
information games. Review of Economic Studies, 64:23–46.

Benaı̈m, M. and Weibull, J. W. (2003). Deterministic approximation of stochastic evolution
in games. Econometrica, 71:873–903.

Berkemer, R. (2008). Disputable advantage of experience in the travelers’ dilemma. Un-
published manuscript, Technical University of Denmark. Abstract in International Con-
ference on Economic Science with Heterogeneous Interacting Agents, Warsaw, 2008.

Binmore, K. (1987). Modeling rational players. Economics and Philosophy, 3-4:179–214 and
9–55.

Binmore, K. (1998). Game Theory and the Social Contract, Volume 2: Just Playing. MIT Press,
Cambridge.

Björnerstedt, J. and Weibull, J. W. (1996). Nash equilibrium and evolution by imitation. In
Arrow, K. J. et al., editors, The Rational Foundations of Economic Behavior, pages 155–181.
St. Martin’s Press, New York.

Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings
nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck. Trans-
lated by M.P. Abramson as “An algorithm for finding the basis elements of the residue
class ring of a zero-dimensional polynomial ideal” in Journal of Symbolic Computation 41
(2006), 475–511.

Cárdenas, J. C., Mantilla, C., and Sethi, R. (2015). Stable sampling equilibrium in common
pool resource games. Games, 6:299–317.

Collins, G. E. (1975). Quantifier elimination for the theory of real closed fields by cylin-
drical algebraic decomposition. In Second GI Conference on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer,
Berlin.

Cox, D., Little, J., and O’Shea, D. (2015). Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer International,
Cham, Switzerland, fourth edition.

Cressman, R. (1996). Evolutionary stability in the finitely repeated prisoner’s dilemma
game. Journal of Economic Theory, 68:234–248.

–37–



Cressman, R. (2003). Evolutionary Dynamics and Extensive Form Games. MIT Press, Cam-
bridge.

Cressman, R. and Schlag, K. H. (1998). On the dynamic (in)stability of backwards induc-
tion. Journal of Economic Theory, 83:260–285.

Dekel, E. and Gul, F. (1997). Rationality and knowledge in game theory. In Kreps, D. M.
and Wallis, K. F., editors, Advances in Economics and Econometrics: Theory and Applications,
volume 1, pages 87–172. Cambridge University Press, Cambridge.

Droste, E., Kosfeld, M., and Voorneveld, M. (2003). Best-reply matching in games. Mathe-
matical Social Sciences, 46:291–309.

Friedman, D. and Oprea, R. (2012). A continuous dilemma. American Economic Review,
102:337–363.

Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59:859–867.

Guggenheimer, H. W., Edelman, A. S., and Johnson, C. R. (1995). A simple estimate of the
condition number of a linear system. College Mathematics Journal, 26:2–5.

Halpern, J. Y. (2001). Substantive rationality and backward induction. Games and Economic
Behavior, 37:425–435.

Hofbauer, J. (1995). Stability for the best response dynamics. Unpublished manuscript,
University of Vienna.

Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis. Cambridge University Press, New
York, second edition.

Izquierdo, L. R., Izquierdo, S. S., and Sandholm, W. H. (2019). An introduction to ABED:
Agent-based simulation of evolutionary game dynamics. Unpublished manuscript,
Universidad de Burgos, Universidad de Valladolid, and University of Wisconsin.

Jehiel, P. (2005). Analogy-based expectation equilibrium. Journal of Economic Theory,
123:81–104.

Kosfeld, M., Droste, E., and Voorneveld, M. (2002). A myopic adjustment process leading
to best reply matching. Journal of Economic Theory, 40:270–298.

Kreps, D. M., Milgrom, P., Roberts, J., and Wilson, R. (1982). Rational cooperation in the
finitely repeated Prisoner’s Dilemma. Journal of Economic Theory, 27:245–252.

Kubler, F., Renner, P., and Schmedders, K. (2014). Computing all solutions to polyno-
mial equations in economics. In Schmedders, K. and Judd, K. L., editors, Handbook of
Computational Economics, volume 3, pages 599–652. Elsevier, Amsterdam.

Mantilla, C., Sethi, R., and Cárdenas, J. C. (2019). Efficiency and stability of sampling
equilibrium in public good games. Journal of Public Economic Theory, forthcoming.

–38–



McKelvey, R. D. and Palfrey, T. R. (1992). An experimental study of the centipede game.
Econometrica, 60:803–836.

McNamee, J. M. (2007). Numerical Methods for Roots of Polynomials, Part I. Elsevier, Ams-
terdam.

Merikoski, J. K., Urpala, U., Virtanen, A., Tam, T.-Y., and Uhlig, F. (1997). A best upper
bound for the 2-norm condition number of a matrix. Linear Algebra and its Applications,
254:355–365.

Osborne, M. J. and Rubinstein, A. (1998). Games with procedurally rational players.
American Economic Review, 88:834–847.

Oyama, D., Sandholm, W. H., and Tercieux, O. (2015). Sampling best response dynamics
and deterministic equilibrium selection. Theoretical Economics, 10:243–281.

Perea, A. (2014). Belief in the opponents’ future rationality. Games and Economic Behavior,
83:231–254.

Perko, L. (2001). Differential Equations and Dynamical Systems. Springer, New York, third
edition.

Ponti, G. (2000). Cycles of learning in the Centipede game. Games and Economic Behavior,
30:115–141.

Radner, R. (1980). Collusive behavior in noncooperative epsilon-equilibria of oligopolies
with long but finite lives. Journal of Economic Theory, 22:136–154.

Reny, P. J. (1992). Backward induction, normal form perfection, and explicable equilibria.
Econometrica, 60:627–649.

Rosenthal, R. W. (1981). Games of perfect information, predatory pricing and the chain-
store paradox. Journal of Economic Theory, 25:92–100.

Rustichini, A. (2003). Equilibria in large games with continuous procedures. Journal of
Economic Theory, 111:151–171.

Sandholm, W. H. (2001). Almost global convergence to p-dominant equilibrium. Interna-
tional Journal of Game Theory, 30:107–116.

Sandholm, W. H. (2003). Evolution and equilibrium under inexact information. Games
and Economic Behavior, 44:343–378.

Sandholm, W. H. (2010a). Pairwise comparison dynamics and evolutionary foundations
for Nash equilibrium. Games, 1:3–17.

Sandholm, W. H. (2010b). Population Games and Evolutionary Dynamics. MIT Press, Cam-
bridge.

–39–



Sandholm, W. H. (2015). Population games and deterministic evolutionary dynamics. In
Young, H. P. and Zamir, S., editors, Handbook of Game Theory, volume 4, pages 703–778.
Elsevier, Amsterdam.

Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2019). Stability for best experienced
payoff dynamics. Unpublished manuscript, University of Wisconsin, Universidad de
Valladolid, and Universidad de Burgos.

Sethi, R. (2000). Stability of equilibria in games with procedurally rational players. Games
and Economic Behavior, 32:85–104.

Stalnaker, R. (1996). Knowledge, belief, and counterfactual reasoning in games. Economics
and Philosophy, 12:133–163.

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics.
Mathematical Biosciences, 40:145–156.

von zur Gathen, J. and Gerhard, J. (2013). Modern Computer Algebra. Cambridge University
Press, Cambridge, third edition.

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Xu, Z. (2016). Convergence of best-response dynamics in extensive-form games. Journal
of Economic Theory, 162:21–54.

Young, H. P. (1998). Individual Strategy and Social Structure. Princeton University Press,
Princeton.

–40–




