
[18:01 23/7/2014 rdu023.tex] RESTUD: The Review of Economic Studies Page: 1 1–35

Review of Economic Studies (2014) 0, 1–35 doi:10.1093/restud/rdu023
© The Author 2014. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.

Demand Reduction and
Inefficiency in Multi-Unit

Auctions
LAWRENCE M. AUSUBEL

University of Maryland

PETER CRAMTON
University of Maryland

MAREK PYCIA
UCLA

MARZENA ROSTEK
University of Wisconsin-Madison

and

MAREK WERETKA
University of Wisconsin-Madison

First version received July 2010; final version accepted April 2014 (Eds.)

Auctions often involve the sale of many related goods: Treasury, spectrum, and electricity auctions
are examples. In multi-unit auctions, bids for marginal units may affect payments for inframarginal units,
giving rise to “demand reduction” and furthermore to incentives for shading bids differently across units.
We establish that such differential bid shading results generically in ex post inefficient allocations in the
uniform-price and pay-as-bid auctions. We also show that, in general, the efficiency and revenue rankings
of the two formats are ambiguous. However, in settings with symmetric bidders, the pay-as-bid auction
often outperforms. In particular, with diminishing marginal utility, symmetric information and linearity,
it yields greater expected revenues. We explain the rankings through multi-unit effects, which have no
counterparts in auctions with unit demands. We attribute the new incentives separately to multi-unit (but
constant) marginal utility and to diminishing marginal utility. We also provide comparisons with the
Vickrey auction.
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1. INTRODUCTION

Many markets sell goods or assets to bidders who demand multiple units. Important examples
include auctions of government debt, electricity, spectrum, emission permits, and refinancing
(repos). One of the pre-eminent justifications for auctioning public resources is to attain
allocative efficiency. Vice President Al Gore opened the December 1994 Broadband Personal
Communications Services (PCS) spectrum auction proclaiming; “Now we’re using the auctions to
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put licences in the hands of those who value them the most.”1 For single-item auctions, the theory,
which has built on the seminal efficiency and revenue equivalence results by Vickrey (1961) and
the revenue rankings by Milgrom and Weber (1982), informs design and policy. To assess the
relative merits of the multi-unit auction formats, none of the classic results can be invoked.

In this article, we show that the classic conclusions about efficiency and revenue rankings
and the possibility of surplus extraction from auctions with unit demands do not hold in multi-
unit settings. The key to why the analogy between single-unit and multi-unit auctions does not
apply is differential bid shading, the incentive to shade bids differently across units in multi-unit
auctions. Such shading arises because a bid for one unit may affect the payments for other units
won and, thus, it is enhanced by bidders’ market power, observed in many markets. Indeed, even
in Treasury auctions, where the number of participants is large, the top five bidders typically
purchase nearly one-half of the issue (Malvey and Archibald, 1998). Electricity and spectrum
markets exhibit even higher levels of concentration. Demand reduction (supply reduction in the
case of electricity auctions) is of great practical importance, both in terms of auction design
and participants’ bidding strategies and, indeed, has influenced design choices in major markets
(Section 6 recalls some prominent cases).

In the majority of multi-unit auctions that are known to us, variants of two formats are used
in practice: the pay-as-bid (“discriminatory-price”) auction, the traditional format in the U.S.
Treasury auctions; and the uniform-price auction, advocated by Milton Friedman (1960) and
currently used by the Treasury. In both formats, bidders each submit bids for various quantities at
various prices, the auctioneer determines the market-clearing price and accepts all bids exceeding
market-clearing price. The two auctions differ in terms of payment: in the pay-as-bid auction,
bidders pay their actual bids. In the uniform-price auction, bidders pay the market-clearing price
for all units won.2 This article compares these two commonly used multi-unit auction formats, as
well as the multi-unit Vickrey (1961) auction. To explore the new effects relative to unit-demand
settings, we first depart from the single-unit demands minimally by considering a flat demands
environment: multi-unit demands with constant marginal utility, up to a capacity. We allow for
general distributions of bidder values, generalizing the Milgrom and Weber (1982) single-object
model. We then examine additional effects introduced by decreasing marginal utility, in settings
where bidders’ values are symmetric and decrease linearly.

Our main findings can be summarized as follows. The uniform-price and pay-as-bid auctions,
respectively, may appear to be multi-unit extensions of the second-price and first-price auctions
for a single item. Nonetheless, the attractive truth-telling and efficiency attributes of the second-
price auction do not carry over to the uniform-price auction; nor does the uniform-price auction,
as a general theoretical matter, generate as much expected revenues as the pay-as-bid auction.3 In

1. In the Omnibus Budget Reconciliation Act of 1993, which authorized spectrum auctions, the U.S. Congress
established the “efficient and intensive use of the electromagnetic spectrum” as a primary objective of U.S spectrum
auctions (47 U.S.C. 309(j)(3)(D)).

2. The cross-country study on Treasury practices by Brenner et al. (2009) reports that, out of the 48 countries
surveyed, 24 use a pay-as-bid auction to finance public debt, 9 use a uniform-price auction, and 9 employ both auction
formats, depending on the type of security being issued; the remaining 6 use a different mechanism. In the U.S., the
Treasury has been using the pay-as-bid auction to sell Treasury bills since 1929 and to issue notes and bonds since the
1970s. In November 1998, the Treasury adopted the uniform-price design, which it still uses today, for all marketable
securities. The two auction formats also have become standard designs when selling initial public offerings (IPOs), repos,
electricity, and emission permits. For instance, the European Central Bank uses auctions in refinancing (repo) operations
on a weekly and monthly basis; since July 2000, these auctions have been pay-as-bid. U.K. electricity generators sell
their products via daily auctions; the uniform-price format was adopted in 1990, but U.K. electricity auctions switched
to the pay-as-bid price format in 2000.

3. Friedman (1960) conjectured that the uniform-price auction would dominate the pay-as-bid auction in revenues.
The notion that sincere bidding does not extend to the uniform-price auction where bidders desire multiple units originates
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fact, every equilibrium of the uniform-price auction is ex post inefficient (with flat demands, this
holds generically in capacities). Our Inefficiency Theorem relies on differential bid shading. This
is apparent from considering the standard first-price auction: every bidder shades his/her bid, but
with symmetric bidders and in a symmetric equilibrium, higher bids still imply higher values.
In certain settings where efficiency is impossible in the uniform-price auction, full efficiency is
nevertheless possible in the pay-as-bid auction. For example, with flat demands, bids for all units
are shaded by identical amounts, which remains consistent with efficiency.

Considering the objectives of efficiency and revenue maximization, we find that the ranking
is generally ambiguous for both criteria.4 We construct environments where the pay-as-bid
auction dominates the uniform-price auction both in expected gains from trade and expected
seller revenues, yet we construct other environments where the reverse rankings hold. We qualify
this ambiguous message with two positive results. First, in auctions with symmetric bidders and
flat demands, the pay-as-bid auction (as well as the Vickrey auction) dominates the uniform-
price auction in both efficiency and revenues, for any fixed number of bidders. Secondly, in
symmetric information settings with decreasing linear marginal utility, even with ex post efficient
allocations, revenues can be ranked: the pay-as-bid auction dominates the Vickrey auction, which
in turn dominates the uniform-price auction, for all environments where linear equilibria exist.
With decreasing marginal utility, none of the multi-unit auctions considered extracts the entire
surplus, even in the competitive limit (where shading is absent in the uniform-price, but not in
the pay-as-bid design). Moreover, while the seller faces a trade-off between expected revenues
and riskiness when selecting an auction format, this trade-off disappears in large markets. Our
analysis also draws attention to the critical role of entry in the assessment of design performance.

Two modelling features of our framework are worth highlighting. First, our model allows for
interdependent values. It is essential that the bidder conditions his/her bid on the information
revealed by winning a particular quantity of the good. Extending the notions of the first-order
statistic and Winner’s Curse to a multi-unit auction setting, we assume that winning a larger
quantity of the good is worse news about the good’s value, since winning more means that others
do not value the good as highly as they might—an effect that we term the Generalized Winner’s
Curse. As a result, a rational bidder shades his/her bid to avoid bidding above his/her conditional
marginal value for the good, as with the standard Winner’s Curse. Henceforth, we will refer to
bid shading as bidding below the bidders’ conditional marginal value for the good, rather than
merely as the shading that arises from Winner’s Curse avoidance.

Secondly, obtaining a sharp ranking of multi-unit auction formats in settings with decreasing
marginal utility requires strong assumptions. Indeed, our approach is motivated in part by
empirical research on multi-unit auctions. As part of the challenge in this literature, obtaining

in the seminal work of Vickrey (1961). Nevertheless, this analogy motivated the influential public debate between two
auction formats in the context of U.S. Treasury auctions. The Joint Report on the Government Securities Market (1992,
p. B-21), signed by the Treasury Department, the Securities and Exchange Commission, and the Federal Reserve Board,
stated: “Moving to the uniform-price award method permits bidding at the auction to reflect the true nature of investor
preferences … In the case envisioned by Friedman, uniform-price awards would make the auction demand curve identical
to the secondary market demand curve.” In September 1992, the Treasury began experimenting with the uniform-price
format, encouraged by Milton Friedman. Empirical evidence on the superiority of either auction format in the Treasury
experiment was inconclusive (see also Malvey et al., 1995; Reinhart and Belzer, 1996; Malvey and Archibald, 1998,
p. 14). In switching to uniform pricing, the Treasury was apparently motivated in part by an incorrect extension to the
multi-unit setting of the result by Milgrom and Weber (1982) that the second-price auction generates greater revenue than
the first-price auction: “One of the basic results of auction theory is that under a certain set of assumptions the revenue
to the seller will be greater with uniform-price auctions than with [pay-as-bid] auctions.” (Malvey and Archibald, 1998,
p. 3).

4. Important earlier work by Back and Zender (1993) in a pure common value setting demonstrated that revenues
may be lower from the uniform-price auction than from a particular equilibrium of the pay-as-bid auction.
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predictive results in multi-unit auctions requires identifying a solution concept that addresses the
multiplicity of equilibria, a problem that is understood to be endemic for uniform-price auctions.
The linear equilibrium does just this for the model with diminishing linear marginal utility.5

The theorems of our article are stated formally for static multi-unit auctions where bidders
submit bid schedules, and so the theorems are most obviously applicable to sealed-bid auctions
such as those for Treasury bills or electricity. However, most of our results can be adapted to
any auction context where equilibria possess a uniform-price character. For example, in the
simultaneous ascending auctions used for spectrum licences, there is a strong tendency towards
arbitrage of the prices for identical items.6 Similarly, consider items that are sold through a
sequence of (single-item) English auctions. The declining-price anomaly notwithstanding, there
is a reasonable tendency toward intertemporal arbitrage of the prices for identical items, and so
a variant on our Inefficiency Theorem should typically apply.

Related literature. Wilson (1979) and subsequent authors (notably, Back and Zender, 1993;
Wang and Zender, 2002) develop the continuous methodology of “share auctions” that we exploit.
However, each of these papers assumes pure common values, so that allocative efficiency is never
an issue—every allocation is efficient. Back and Zender (1993), as well as Wang and Zender
(2002), also address the issue of revenue ranking of the uniform-price and pay-as-bid auctions
for a class of functional forms. They faced the methodological limitation of comparing one
equilibrium (out of a multiplicity of equilibria) of the uniform-price auction with one equilibrium
of the pay-as-bid auction. By contrast, our Inefficiency Theorem is a statement about the entire
set of equilibria; and our analysis of settings with diminishing linear marginal utility is based on
the linear equilibrium, which is unique in both auction formats.

Noussair (1995) and Engelbrecht-Wiggans and Kahn (1998) examine uniform-price auctions
where each bidder desires up to two identical, indivisible items. They find that a bidder generally
has an incentive to bid sincerely on his/her first item but to shade his/her bid on the second
item. Engelbrecht-Wiggans and Kahn (1998) provide a construction which is suggestive of the
inefficiency and revenue results we obtain below, and offer a particularly ingenious class of
examples in which bidders bid zero on the second unit with probability one. Tenorio (1997)
examines a model with two bidders who each desire up to three identical items and is constrained
to bid a single price for a quantity of either two or three. He finds that greater demand reduction
occurs under a uniform-price auction rule than under a pay-as-bid rule. Bolle (1997) addresses
the efficiency question which we pose here. In a framework restricted to discrete goods and to
independent private values, he simultaneously and independently of our work concludes that
equilibria of the uniform-price and pay-as-bid auctions are always inefficient.7

5. The linear equilibrium allows us to provide several positive results along with the general conclusions of the
first part; in particular, the expected revenue ranking for all distributions that admit linear equilibria; the ex post revenue
ranking for general distributions; a stochastic dominance result implying risk-revenue trade-off for the seller; of the
uniform-price and Vickrey auctions (Propositions 4, 5, 8, 9; Theorem 3). The linear equilibrium gives rise to fixed-point
characterizations of price impacts. The linear equilibrium is widely used in the literature, particularly for the uniform-price
auction, and has some empirical support in both formats (see note 16). Our characterization of the class of distributions
which admit such linear equilibrium in the discriminatory price auction is of independent interest. The assumptions on
distributions (but not values) are admittedly less general, but the revenue ranking results for the linear marginal utility
give a complete understanding for the class of Linear Bayesian Equilibria, which has been the focus of the theory and
microstructure literature on games with demand schedules as strategies, and allow us to consistently separate the effect
of decreasing marginal utility and uncertainty on bidding.

6. Indeed, in the U.S. Federal Communications Commission’s (FCC’s) Nationwide Narrowband Auction of July
1994, similar licences were on average priced within 0.3% of the mean price for that category of licence, and the five
most desirable licences sold to three different bidders identically for $80 million each.

7. Holmberg (2009) and Hasto and Holmberg (2006) study electricity markets in which the bidders can take both
long (buy) and short (sell) positions in the auction, and they show that bidders prefer the uniform-price auction to the
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The revenue in multi-unit auctions where bidders desire multiple units of a good was studied
by Engelbrecht-Wiggans (1988) and Maskin and Riley (1989), who show that the weak form of
the Revenue Equivalence Theorem holds in an independent private value setting: each bidder’s
surplus, and hence the seller’s revenue, depends only on the allocation of the goods. Auctions
that result in the same allocation of goods necessarily yield the same revenue. As we indicate,
however, the uniform-price, pay-as-bid, and Vickrey auctions generally assign goods differently,
so the strong form of revenue equivalence fails.

Controlled field and experimental studies confirm the presence of demand reduction
in the uniform-price auction. Kagel and Levin (2001) find substantial demand reduction
with uniform pricing, regardless of whether the auction was static or dynamic. Similarly,
List and Lucking-Reiley (2000) find demand reduction in Internet experiments with two units
and two bidders. Engelbrecht-Wiggans, List, and Lucking-Reiley (2006) conduct sportscard
auctions with more than two bidders. Consistent with our results, they find that demand
reduction diminishes with competition but does not vanish. Extensive literature of laboratory
experiments on revenue rankings has tended to slightly favour the uniform-price auction, except
when bidders’ demand curves are sufficiently steep (Smith, 1967, 1982). More recently, a
growing empirical literature seeks structural methods to examine bidding behaviour and compare
auction mechanisms (e.g. Wolak, 2003, 2007; Février et al., 2004; Armantier and Sbai, 2006;
Chapman et al., 2007; Hortaçsu and Puller, 2008; Hortaçsu and McAdams, 2010; Kastl, 2010).
The pioneering work of Hortaçsu and McAdams (2010) using Turkish data finds that the pay-as-
bid auction produced more revenue, ex post, than the uniform-price auction would have, but the
authors fail to reject ex ante expected revenue equality.

This article is organized as follows. In Section 2, we develop a series of examples providing
some intuition for bidding behaviour and its impact on efficiency and revenues. Section 3
introduces a general model of divisible good auctions. In Section 4, we analyse the special
case of constant marginal utility up to a fixed capacity. This flat demands assumption simplifies
the analysis while still nesting most of the unit-demand settings that have been analysed in
the literature. We establish that, generically, all equilibria of the uniform-price auction are
inefficient (Theorem 1) and that the efficiency and revenue rankings of the uniform-price and
pay-as-bid auctions are ambiguous (Theorem 2). One insight from this comparison is that bidder
heterogeneity matters: Equilibrium efficiency of the pay-as-bid auction relies on strong symmetry
of bidder values and capacities (cf. Propositions 2 and 3). Then, in Section 5, we consider
bidders with diminishing linear marginal utilities in a symmetric-information model and we
examine the additional multi-unit effects that are introduced. In this setting, we establish expected
revenue dominance of the pay-as-bid auction over the Vickrey and uniform-price auctions for all
symmetric linear equilibria (Theorem 3) and ex post revenue dominance of the Vickrey auction
over the uniform-price auction (Proposition 8). Section 6 concludes, emphasizing the practical
importance of demand reduction, as seen in spectrum and electricity auctions.AppendixAcontains
the proofs, Online Appendix B offers additional examples, and Online Appendix C provides a
full treatment of Example V (Section 2.2).

2. EXAMPLES

We illustrate the intuition of this article with a series of simple two-bidder, two-unit examples.
We first discuss how the presence of multi-unit demands alters strategic incentives in a standard

pay-as-bid auction. Other theoretical advances focused on the revenue rankings and efficiency in large, competitive
markets (Swinkels, 2001; Federico and Rahman, 2003; Jackson and Kremer, 2006), abstracting from the strategic effects
of bidders’ market power (Federico and Rahman (2003) also analyse monopolistic market structures).
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asymmetric information setting. To highlight the differences relative to an auction with unit
demands, we assume that each bidder has the same value for a second unit as for the first. In the
second part, we discuss strategic considerations arising purely from diminishing marginal utility
for the second unit.

2.1. Flat demands

Consider two bidders with quasilinear utilities bidding for a supply of two identical, indivisible
items. Each bidder i (i=1,2) has a constant marginal value vi ≥0 for a first and second unit. Thus,
bidder i paying Pi for qi units receives utility ui(vi,qi,Pi)=qivi −Pi. The examples are:

Example I: Each bidder i has a constant marginal value, vi, for two units, where vi ∼U[0,100],
for i=1,2.
Example II: Each bidder i has a constant marginal value, vi, for two units, where v1 ∼U[0,66 2

3 ]
and v2 ∼U[0,133 1

3 ].
Example III: Each bidder i has a constant marginal value, vi, for two units, where v1 ∼U[0,80]
and v2 ∼U[40,80].

Since the demands are flat, an auction is ex post efficient if it allocates both units to the bidder
with the higher realization of vi.

We consider three standard multi-unit auction formats: the two formats predominantly used in
practice, the uniform-price and pay-as-bid auctions; as well as the theoretical benchmark of the
Vickrey auction. In each of these formats, a bidder submits a bid given by two numbers

(
b1

i ,b
2
i

)
,

one for each item. The auctioneer ranks all four bids and awards items to the two highest bids.
The formats differ in how the payment Pi is determined.

2.1.1. Uniform-price auction. In the uniform-price auction, the monetary payment for
each item is given by the highest rejected bid (i.e. the third-highest bid). We show below that the
bidding strategies:

b1
i (vi)=vi and b2

i (vi)=0, fori =1,2, (1)

constitute a Bayesian–Nash equilibrium of the uniform-price auction in each of Examples I–III,
i.e. regardless of whether the values are drawn from symmetric or asymmetric distributions.
Thus, a bidder with demand for two units behaves in this equilibrium as if he/she had a positive
marginal value for only a single unit, and he/she bids his/her true value for that unit.8

As in the second-price auction for a single item, it is weakly dominant for both bidders to bid
their true value for the first item; the first bid determines the price only when it is the third-highest
bid, in which case the bidder wins zero items and the price is irrelevant to the bidder. When the first
bid does not set the price, profits are maximized by making the bid compete favourably against
all bids below the bidder’s true value; the bidder then wins a unit only when it can profitably
be won.

Now, consider bids for the second item. Given strategy (1) of bidder j, bidder i’s bid of b2
i

faces two possibilities: if b2
i <vj then bidder i wins one item and pays b2

i ; if b2
i >vj then bidder i

wins two items and pays vj for each. Thus, bidder i’s expected pay-off from strategy (vi,b2
i ) is:

πi

(
vi,b

2
i

)
=2
∫ b2

i

0
(vi −p)dFj (p)+

(
vi −b2

i

)(
1−Fj

(
b2

i

))
,

8. Equilibria with this structure were discovered by Noussair (1995) and Engelbrecht-Wiggans and Kahn (1998)
in closely related models.
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where Fj(·) is the distribution function of bidder j’s value. Bidding more aggressively for the
second item increases the probability of winning that item, while increasing the expected payment
for the first item. Note that increasing the bid b2

i by a small amount ε>0 changes the expected
pay-off by approximately

[(
vi −b2

i

)
fj
(
b2

i

)−(1−Fj
(
b2

i

))]
ε. With the uniform distribution, this

effect is always negative, and so it is strictly optimal for the bidder to submit b2
i =0. In other

words, it is optimal for him/her to shade his/her value maximally for the second unit, regardless
of his/her true value.9

The described Bayesian–Nash equilibrium is ex post inefficient. Even though one of the
bidders has a strictly higher value for both items with probability one, the two items are always
allocated to different bidders. Moreover, the uniform-price auction performs exceedingly poorly
in relation to revenues: for each realization of values, the third-highest bid is zero and, hence, the
revenues are zero as well.

In addition to this “zero-revenue” equilibrium, there is also an efficient equilibrium of the
uniform-price auction. It is obtained by embedding the truth-telling equilibrium of the second-
price auction for a single item into the multi-unit game. If a bidder’s opponents bid b1

i (vi)=
vi =b2

i (vi), then it is a best response for the bidder to do the same. However, as we show in
Section 4, the existence of this second equilibrium crucially requires that the agents’ capacities to
absorb units (equal to 2) must be identical and supply must be an integer multiple of the common
capacity. If this is not the case, Theorem 1 in Section 4 establishes that an efficient equilibrium
does not exist.

Thus, these examples also illustrate the pervasive multiplicity of equilibria of the uniform-price
auction, first observed by Wilson (1979).

2.1.2. Pay-as-bid auction. In the pay-as-bid auction, the monetary payment for each
item coincides with the corresponding (winning) bid for that item. In particular, with flat bids,
the bid for one item does not affect the payment for the other item, and submitting the same value
for both items (i.e. flat bids) is an equilibrium. To construct such a flat-bid equilibrium, denote
the common bid of bidder j by bj

(
vj
)=b1

j

(
vj
)=b2

j

(
vj
)
. If bidder j follows the flat-bid strategy

while bidder i bids (b1
i ,b

2
i ), then i’s utility is:

πi

(
b1

i ,b
2
i

)
=
∑

k=1,2

(
vi −bk

i

)(
Fj

(
b−1

j

(
bk

i

)))
.

This utility can be maximized pointwise and is symmetric with respect to both items.10 In
the symmetric case, the distributions of values are identical and the first-order condition

Fj

(
b−1

i

(
bk

i

))=(vi −bk
i

)
fj
(

b−1
i

(
bk

j

))
, k =1,2, has a symmetric solution bi (·)=bj (·). The

9. In the uniform-price auction, the bid on the pivotal unit determines the price on all other units won. This creates
an incentive to bid less than the true value on later units to reduce the price on the earlier units. With discrete goods, this
intuition suggests that the bidder will bid his/her true value on his/her first unit demanded, but strictly less than his/her
true value on all subsequent units. With divisible goods, it suggests further that a bidder’s submitted demand curve will
take on the qualitative features of a monopolist’s marginal-revenue curve: at zero quantity, the demand curve and the bid
curve (marginal revenue curve) intersect, but at all positive quantities, the bid curve (marginal revenue curve) lies strictly
below the true demand curve. We establish these features of bid shading for discrete values and divisible decreasing
marginal utilities.

10. The separability of expected profits from the two items implies that the Bayesian–Nash equilibrium of the first-
price auction for a single item can be embedded into the the pay-as-bid auction with symmetric bidders. The strategies
and per-item revenues are then the same as in the first-price auction.
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auction then efficiently allocates both items. In the asymmetric case, the equilibrium strategies
are asymmetric and the outcome is inefficient.

2.1.3. Vickrey auction. In the benchmark multi-unit Vickrey auction, the payment for
bidder i’s first and second items (if won) is the sum of the first- and the second-highest rejected
bids reported by bidders j �= i. A bidder has no impact on his/her own payments and bidding
b1

i (vi)=b2
i (vi)=vi for i=1,2 is weakly dominant for each bidder and constitutes a Bayesian–

Nash equilibrium, which is ex post efficient.

Combining the above observations with further analysis in Section 4 and numerical
calculations reported in Tables 1 and 2, we can reach the following conclusions:

• In symmetric Example I, each of the three auction formats has an efficient equilibrium, for
which revenues and surplus are the same.

• In asymmetric Example II, which generalizes a single-unit example of Maskin and Riley
(2000), the uniform-price and Vickrey auctions have efficient equilibria; the pay-as-bid
auction’s equilibrium, while inefficient, raises higher revenues.

• In asymmetric Example III, revenue maximization coincides with efficiency—see the first
paragraph of the proof of Theorem 2—and, consequently, the efficient equilibrium of the
uniform-price and Vickrey auctions dominate the inefficient equilibrium of the pay-as-bid
auction in both revenues and surplus.

• In Examples I–III, the uniform-price auction also displays an equally plausible second
equilibrium, which generates zero revenues and markedly reduced surplus.

Table 1 summarizes numerical calculations of expected revenues and Table 2 summarizes
numerical calculations of expected surplus in the constructed Bayesian–Nash equilibria of the
three standard auction formats.

2.2. Diminishing marginal utility11

In our next example, we argue that allowing for diminishing marginal utility qualitatively changes
bidding incentives in multi-unit auctions. To this end, we modify Example I as follows.

Example IV: Each bidder i has decreasing marginal utility, with v1
i =vi for the first unit and

v2
i =ρvi for the second unit, where vi ∼U[0,100], for i=1,2 and ρ∈ (0,1) capturing the extent

of “diminution” of marginal utility.

Example IV directly nests Example I as its limit when ρ→1. In both examples, bidders are
symmetric. Similarly to the original example, we restrict attention to symmetric and monotone
equilibria in which each buyer submits two bid functions (b1(·),b2(·)) that are weakly increasing
in vi, once continuously differentiable, and satisfy b1(·)≥b2(·). The detailed derivation of
equilibria, and arguments supporting existence and uniqueness for the three auction formats
are given in Online Appendix C.

2.2.1. Uniform-price auction. In the uniform-price auction, a lower ρ reduces
incentives to bid for the second unit relative to flat demands, and bids given by (1) constitute a
Bayesian–Nash equilibrium also when ρ<1. The equilibrium is ex post inefficient and yields zero

11. The results of Section 2.2 (and Online Appendix C) were originally developed in Weretka (2014).
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TABLE 1
Expected revenues in two-item auctions

Revenues Example I Example II Example III

Pay-as-bid 66.67 61.19 61.99
Uniform-price Zero-revenue equilibrium 0 0 0
Uniform-price Efficient equilibrium 66.67 55.56 73.33
Vickrey 66.67 55.56 73.33

TABLE 2
Expected surplus in two-item auctions

Surplus Example I Example II Example III

Pay-as-bid 133.33 141.68 95.22
Uniform-price Zero-revenue equilibrium 100 100 100
Uniform-price Efficient equilibrium 133.33 144.44 126.67
Vickrey 133.33 144.44 126.67

revenue. Contrary to the flat demand settings, bidding one’s true values (b1
i ,b

2
i )= (vi,ρvi), i=1,2,

is not an equilibrium. With truth telling, for realizations of values of opponent j, vj ∈ (ρvi,vi), the
uniform-price auction assigns to bidder i one unit for which he/she pays b2

i . For other realizations
of vj, bidder i either does not win any unit or does not determine the price. It follows that
bidder i has a strict incentive to reduce the second bid b2

i below his/her true value ρvi. In Online
Appendix C, we demonstrate that the zero-revenue equilibrium (1) is unique within the class of
symmetric monotone equilibria.

2.2.2. Pay-as-bid auction. By standard arguments (as in the first-price auction), in a
symmetric monotone equilibrium, bid functions b1(·),b2(·) are strictly increasing. Bidder i
observes vi and submits (b1

i ,b
2
i ) satisfying b1

i ≥b2
i . With no benefit from overbidding for the

first unit at vi =100, b1(100)=b2(100)= b̄, and both bids are from some interval b∈[0,b̄].
Let φ1(·),φ2(·) denote corresponding inverses of b1(·), b2(·), satisfying φ2(·)≥φ1(·). The

marginal bid distribution of buyer j for units k =1,2 is Pr
[
bk
(
vj
)≤b

]=F
[
φk (b)

]= φk(b)
100 . Bidder

i wins two units if the second bid exceeds j′s bid for the first unit, b2
i >b1(vj

)
. The probability of

this event is F
[
φ1(b2

i

)]
, and he/she wins one unit if b1

i >b2(vj
)

and b2
i <b1(vj

)
, which happens

with probability F
[
φ2(b1

i

)]−F
[
φ1(b2

i

)]
. Thus, i′s net expected utility is given by:

πi(b
1
i ,b

2
i ) = F

[
φ1
(

b2
i

)](
vi +ρvi −b1

i −b2
i

)
+(F

[
φ2
(

b1
i

)]
−F

[
φ1
(

b2
i

)]
)
(

vi −b1
i

)
=

= F
[
φ1
(

b2
i

)](
ρvi −b2

i

)
+F

[
φ2
(

b1
i

)](
vi −b1

i

)
.

The net utility functions consist of two separate components, each depending on the bid for one
of the two units. The first-order conditions, the uniform distribution, the equilibrium symmetry,

and the fact that b1
i =b1(vi) and b2

i =b2(vi) jointly imply, for any b∈[0,b̄], [φ1(b)]′ = φ1(b)
ρφ2(b)−b

and [φ2(b)]′ = φ2(b)
φ1(b)−b

. Following the steps analogous to the derivation of equilibrium in the

first-price auction with asymmetric bidders, one can solve the system of differential equations
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Figure 1

Bids in the pay-as-bid auction

and obtain equilibrium bids by inverting φk (·). In particular, bidding (b1(·),b2(·)) by each agent,
where

b1(vi) = 1002ρ2

ρ2 −1

1

vi

⎛
⎝1−

√
1+ 1−ρ2

1002ρ2
(vi)

2

⎞
⎠, (2)

b2(vi) = 1002ρ

1−ρ2

1

vi

⎛
⎝1−

√
1− 1−ρ2

1002
(vi)

2

⎞
⎠,

constitutes a symmetric Bayesian–Nash equilibrium. Bid functions for various values of ρ are
depicted in Figure 1. In Online Appendix C, we demonstrate that equilibrium is unique in the
symmetric monotone class.

In contrast to flat demands, decreasing marginal utility introduces asymmetry across units,
and bidders shade their values differently for both units. As a result, for some realizations of
values, units are not assigned to agents with the highest values. The shading behaviour, however,
differs qualitatively from what we have seen before. In the uniform-price auction, the equilibrium
bid function is steeper than the true demand curve. By contrast, in the pay-as-bid auction, the
equilibrium bid function is flatter than the true demand curve: agents bid below their true values
for both units, with bid shading larger for the first unit. Expected revenue is strictly positive for
all ρ∈ (0,1). The limit of bids (2) as ρ→1 converges to the equilibrium strategies in Example I;
at the opposite extreme, as ρ→0, there is no competition for the second unit and revenues (from
both units) converge to zero. Example IV continuously extends the predictions of the flat-demands
model to settings with diminishing marginal utility.
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Figure 2

Surplus and Revenue in the three auction formats

2.2.3. Vickrey auction. In the multi-unit Vickrey auction with diminishing marginal
utility, all agents bidding their true values continues to be an equilibrium. As a result, the expected
surplus is maximized; it is monotonic in ρ, increasing from 100 to 133.33 as ρ goes from 0 to
1. Expected revenues are also monotonic in ρ, increasing from 0 to 66.67 as ρ goes from 0 to
1; they are below the revenues of the pay-as-bid auction for ρ∈(0,1), and they converge to the
same revenues as the pay-as-bid auction at the end points.

Numerical calculations for different values of ρ are depicted in Figure 2. Figure 2(a) compares
the expected surplus in the unique symmetric monotone Bayesian–Nash equilibria of each auction
format, while Figure 2(b) compares the expected revenues. For ρ→0, all auctions give the
maximal surplus of 100 and 0 revenue, while for ρ→1, the surplus and revenue converge to
those in Example I (and, specifically for the uniform-price auction, the zero-revenue equilibrium).
The conclusions for auctions with diminishing marginal utility (Example IV), as compared to flat
demands (Example I), are as follows:

• The instances in which truth telling is an equilibrium of the uniform-price auction are
eliminated and symmetric monotone equilibria are unique in the three auction formats.

• Differential bid shading is increasing in the number of units won in the uniform-price
auction and decreasing in the pay-as-bid auction.

• Pay-as-bid and uniform-price auctions are inefficient and efficiency rankings are
ambiguous: the pay-as-bid auction dominates (is dominated by) the uniform-price auction
for large (small) values of ρ.

• The pay-as-bid auction gives higher expected revenues than the Vickrey auction, which in
turn dominates the uniform-price auction, for all values of ρ∈(0,1).
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While the examples of this section have been special, they are representative of more general
results that will follow.Auctions in settings with flat demands are studied more generally in Section
4, and auctions in settings with perfectly divisible goods and linearly decreasing marginal utility
are studied in Section 5. Multiplicity of equilibrium is endemic to multi-unit auctions, making
efficiency and revenue comparisons of auction formats potentially problematic. Diminishing
marginal utility introduces further strategic aspects. A recurring theme of our article is to find
compelling ways to make comparisons possible.

3. MODEL

We make the following general assumptions. Quantity Q of a perfectly divisible good is sold
to I bidders. Each bidder receives a private signal si ∈ [0,1] of his/her value vi before bids are
submitted; this signal will be referred to as the bidder’s type. Let s≡{si}I

i=1 and let s−i ≡
{
sj
}

j �=i.

Types are drawn from the joint distribution F with support [0,1]I and finite density f that is strictly
positive on (0,1)I . While distribution function F is commonly known to bidders, the realization
si is known only to bidder i. A bidder i with value vi consuming qi and paying Pi has a pay-off
ui(vi,qi,Pi), where vi =vi(s). The seller’s valuation for the good is 0.

An assignment of the good auctioned among bidders Q∗(s)≡(Q∗
1 (s),...,Q

∗
I (s)

)
is said to be

ex post efficient if each unit goes to the bidder who values it the most:

Q∗(s)≡arg max
Q1(s),...,QI (s)

{
I∑

i=1

ui(vi (s),Qi (s),0)

∣∣∣∣∣
I∑

i=1

Qi (s)≤Q

}
. (3)

The seller uses a conventional auction to allocate the good. In a conventional auction, bidders
simultaneously and independently submit bids and the items are awarded to the highest bidders.
In the formal analysis we assume that, having observed his/her signal si, each bidder i submits a
bid function bi(·,si) : [0,Q]→[0,∞) expressing the value bi bid for any quantity q. We require the
function bi to be right-continuous at q=0, left-continuous at all q∈ (0,Q] and weakly decreasing.
The market-clearing price p̄ is then set at the highest rejected bid,

p̄=min

{
p|

I∑
i=1

b−1
i (p)≤Q

}
,

where b−1
i is bidder i’s demand function constructed by inverting his/her bid function.12 If∑

i b
−1
i (p̄,si)=Q, then each bidder i is assigned a quantity of Qi ≡b−1

i (p̄,si). If
∑

i b
−1
i (p̄,si)>Q,

then the aggregate demand curve is flat at p̄, and some bidders’ demands at p̄ will need to be
rationed.13 The pricing rule Pi depends on the auction:

12. In section with flat demands, an inverse bid b−1
i (·,si) is constructed from the bid function as follows. Given

fixed si, let �={(q,bi(q,si))|q∈[0,λi]}∪
{
(0,P̄),(λi,0)

}
, where λi is the capacity of bidder i (defined in Section 4.1),

capacities denote the graph of bi(q) and the two additional points which say that, at a sufficiently high price P̄, the bidder
demands nothing, and at a price of zero, the bidder demands his/her optimal quantity (denoted λi). Take the closure of
�, and then fill vertically all the discontinuities of the demand curve, and call the result �′. Define a weakly decreasing
correspondence γi(p)={q|(q,p)∈�′}, and define function b−1

i (p,si) to be the selection from γi(p) which is left-continuous
at p= P̄ and right-continuous at all p∈[0,P̄). Since each b−1

i (·,si) is weakly decreasing, and since the construction for
inverting bid functions imposes that b−1

i (0)=λi and b−1
i (P̄)=0, observe that the market-clearing price p̄ exists and is

unique, and p̄∈ (0,P̄).
13. If there is just a single bidder whose demand curve is flat at p̄, then this bidder’s quantity is reduced by∑

i b
−1
i (p̄,si)−Q. If there are multiple bidders with demand curves flat at p̄, then quantity is allocated by proportionate
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Uniform-price auction: Each bidder i assigned Qi pays the market clearing price p̄ for each of
the Qi units obtained; i’s total payment is Pi =Qip̄.
Pay-as-bid auction: Each bidder i assigned Qi pays his/her winning bids; Pi =

∫ Qi
0 bi(y,si)dy.

Note that most other sealed-bid auction formats in the literature (most conspicuously, the
multi-unit Vickrey auction) also satisfy the definition of a conventional auction.

Finally, the equilibrium concept used in this article is the usual Bayesian–Nash Equilibrium,
which comprises a profile of bid functions, bi(·,si), for every type of every bidder which are
mutual best responses.

4. CONSTANT MARGINAL VALUES

In this section, we study bidders with constant marginal values for the good, up to fixed capacities,
i.e. “flat demands”.

4.1. Assumptions

In the analysis of the flat demands model, we normalize Q=1 without loss of generality. Each
bidder i can consume any quantity qi ∈[0,λi], where λi ∈ (0,1) is a capacity; formally, we assume
that utility from consuming quantities qi>λi is negative. To make the problem non-trivial, we
require that there be competition for each quantity of the good: for each i,

∑
j �=iλj ≥1. One can

interpret qi as bidder i’s share of the total quantity and λi as a quantity restriction. For example,
in the U.S. Treasury auctions, a bidder’s net long position, including both pre-auction trading and
the auction award, cannot exceed 35%. The FCC spectrum auctions have had similar quantity
restrictions.

Bidder i has a constant marginal value vi ∈[0,1] for the good up to the capacity λi, and the
bidder’s utility is ui(vi,qi,Pi)=qivi −Pi, for qi ∈[0,λi]. The relationship between types si ∈[0,1]
and values vi (·,·) is common knowledge among bidders, and is assumed to satisfy the following:

Assumption 1 (Value monotonicity): Function vi (si,s−i) is strictly increasing in si, weakly
increasing in each component of s−i, and continuous in all its arguments.

Assumption 2 (Types rank values): si>sj ⇒vi(s)>vj(s).

The model generalizes that of independent private values in two ways: values may depend on
the private information of others, and a bidder’s private information need not be independent of
the private information of others. The types rank values assumption deliberately excludes a pure
common value model, since in that case any assignment respecting the capacities λi—and hence
any auction that does not have a reserve price and that does not force bidders to buy more than
they want—is efficient.14 Note that the above assumptions imply that any two ex post efficient
assignments are equal with probability one.

A critical element in the analysis of auctions for a single good is the first-order statistic. If
Yi =max

{
sj|j �= i

}
is the highest signal of bidders other than i, then bidder i receives the good in

the efficient assignment only if si ≥Yi. In m-unit auctions where each bidder can win at most one
unit, the m-th-order statistic serves the analogous role. However, when analysing general multi-
unit auctions the order statistics by themselves are inadequate: the quantity won by a bidder

rationing. For our purposes, the specific tie-breaking rule will not matter, since with probability one, there is at most a
single bidder with flat demand at p̄. Define bidder i’s incremental demand at p̄ as 	i(p̄)≡b−1

i (p̄,si)−limp↓p̄ b−1
i (p,si).

Then, bidder i is awarded an amount b−1
i (p̄,si)−(

∑
i b

−1
i (p̄,si))−Q)	i(p̄)/

∑
i	i(p̄).

14. Section 5 studies a special case of the pure common value model.
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confers additional information. We thus appropriately generalize the first-order statistic notions
to a multi-unit auction.

Definition. Fix an efficient assignment Q∗. For any s−i ∈[0,1]I−1 and q∈ (0,λi], define τ q
i (s−i)≡

inf
{
si ∈[0,1] :Q∗

i (si,s−i)≥q
}
, the minimal signal of bidder i such that this bidder is assigned

at least q items in the efficient assignment Q∗. Let Fq
i (y|x)=Pr{τ q

i (s−i)≤y|si =x} be the c.d.f.
of statistic τq

i (s−i) conditional on i’s own signal, and let f q
i (y|x) denote the associated density

function. Let wq
i (x,y)=E[vi (si,s−i)|si =x,τq

i (s−i)=y] be an expected value conditional on own
signal and statistic τq

i (s−i), and (if defined) let w+
i (x,x)≡ limq↓0wq

i (x,x).

Note that, with probability one, Q∗(s) is defined uniquely by equation (3). Furthermore,
τ

q
i (s−i) is defined uniquely for every s−i ∈ (0,1)I−1 and q∈ (0,λi]. We will henceforth assume

that the primitives of the model have been specified such that Fq
i (y|x), f q

i (y|x), and wq
i (x,y), when

needed, are mathematically well-defined functions, and such that wq
i (x,y) is continuous in (x,y).

Essentially all of the previous auction literature has made assumptions that imply the presence
of the Winner’s Curse, the notion that winning is “bad news”: a bidder’s expected value conditional
on winning is less than or equal to his/her unconditional expected value. In the single-good case,
the standard assumptions postulate that each bidder’s expected value from the good ṽi(x,y)≡
E[vi|si =x,Yi =y] is strictly increasing in x and weakly increasing in y (Milgrom and Weber,
1982, p. 1100). Our value monotonicity Assumption 1 implies that wq

i (x,y) is strictly increasing
in x and weakly increasing in y for all bidders i and quantity levels q. To extend the Winner’s
Curse concept to the multi-unit auction setting, we also need to capture the idea that winning a
larger quantity is “worse news” than winning a smaller quantity. We thus assume the following.

Assumption 3 (Generalized winner’s curse): A multi-unit auction environment exhibits the
Generalized Winner’s Curse if, for all bidders i, wq

i (x,x) is weakly decreasing in q.
Note that this assumption implies that w+

i is well defined for all bidders i.

4.2. Efficiency

We begin our analysis by noting that, in any of the considered auction formats, an equilibrium
can be efficient only if the bids are flat.

Proposition 1. (Efficient bids). If a Bayesian–Nash equilibrium of a conventional auction
attains ex post efficiency, then all bidders use symmetric, monotonic, flat bid functions: there exists
a strictly increasing function φ : [0,1]→[0,1] such that bi(q,si)=φ(si) for all bidders i=1,...,I,
for all quantities q∈[0,λi], and for almost every type si ∈[0,1]. Moreover, in the uniform-price
auction, every bidder i uses the symmetric, flat bid function bi(q,si)=φ(si)=w+(si,si), for every
type si ∈[0,1] and every quantity q∈[0,λi].

To see heuristically why efficiency requires flat bidding, consider a symmetric equilibrium
where bi =bj for all bidders i,j. Efficiency requires that the bidder with the highest value, say
bidder i, receives quantity λi. Thus bi (q,si)≥bj (0,y)=bi (0,y) for all bidders j �= i and signals
y<si. The monotonicity and left-continuity of bi allow us to conclude that bi is flat. We provide
a complete proof in Appendix A.

4.2.1. Uniform-price auction. Next, we develop the main insight of Section 4: all
equilibria of the uniform-price auction are inefficient. We then finish the equilibrium analysis
by looking at the efficiency of pay-as-bid auctions.
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Theorem 1. (Generic inefficiency of uniform-price auction). Consider a flat-demand setting
that exhibits the Generalized Winner’s Curse. There exists an ex post efficient equilibrium of the
uniform-price auction if, and only if, λi =λ for all i, 1/λ is an integer, and w+

i (x,x)=w+
j (x,x)

for all i,j and x.

The intuition behind Theorem 1 is that bidders have market power in the uniform-price auction.
If a bidder has a positive probability of influencing price in a situation where the bidder wins
a positive quantity, then the bidder has incentives to shade his/her bid. In particular, if a bidder
cannot be pivotal for small quantities, then he/she bids his/her expected values for them. If the
same bidder is pivotal with positive probability for large quantities, then he/she shades his/her bid
for such quantities. Consequently, his/her bid cannot be flat, and by the preceding proposition,
the equilibrium is not efficient. We show that such a bidder exists, unless λi =λ for all i and 1/λ
is an integer.

The logic is as follows. By Proposition 1, in an efficient equilibrium each bidder i expects
other bidders j �= i to submit flat bids. Thus, bidder i’s bids for sufficiently small quantities are
never pivotal: for any subset of other bidders I ′ ⊂{1,...,I}−{i} whose combined capacity satisfies∑

j∈I ′λj<1, adding a sufficiently small quantity qi to the combined capacity of bidders in I ′ does
not reverse the strict inequality,

∑
j∈I ′λj +qi<1. Thus, bids bi(q,si) for small quantities q never

determine the market-clearing price. Analogous to the reasoning for the second-price auction of
a single item, it will then be optimal for bidder i to maximize the probability of winning in all
events in which the expected value, conditional on winning, exceeds the payment. Hence, bidder
i bids bi(q,si)=wq

i (si,si) for all small q. This part of the argument relies on the assumption of a
Generalized Winner’s Curse.15

Furthermore, by Proposition 1, in an efficient equilibrium the bid function is constant for all
quantities up to capacity, and hence the necessary condition for efficiency is

bi(q,si)=w+
i (si,si) for q∈[0,λi]. (4)

This condition is generically violated in a Bayesian–Nash Equilibrium. In the Appendix A, we
demonstrate that flat bid bi(q,si)=w+

i (si,si) is not a best response for the bidder with the greatest
capacity (say, bidder 1), unless λi =λ for all i=1,...,I and 1/λ is an integer. Specifically, there
exists a subset of bidders other than i=1, J ⊂{2,...,I}, for which

∑
j∈J λj<1 and

∑
j∈J λj +λ1>1.

Then, for a quantity threshold L̄1 ≡1−∑j∈J λj, bidding strategy

b̂1(q,s1)=
{

w+
1 (s1,s1) for q∈[0,L̄1]
β for q∈ (L̄1,λ1]

}
,

for β less than but sufficiently close to w+
1 (s1,s1), yields a strictly higher pay-off than strategy

(4). This is so because with positive probability the signals of all bidders from set J are higher
than s1 while the signals of the remaining bidders are lower than s1, and bidder 1 wins L̄1 units
at price β. Such an event gives bidder i=1 an incentive to shade his/her bid for sufficiently large
quantities, q∈ (L̄1,λ1].

For an integer 1/λ with λi =λ, the proof of inefficiency does not go through. In this special
case, a bidder affects price only when he/she wins nothing, and bidding expected value conditional

15. In the absence of the Generalized Winner’s Curse, wq
i (si,si)>w+

i (si,si) for some q∈ (0,λi]. Because bids are
constrained to be weakly decreasing in quantity, this violation of the Generalized Winner’s Curse would imply that bidder
i might want to bid more than w+

i (si,si) at some small q∈ (0,λi] to be able to bid higher than w+
i (si,si) at some large

q∈ (0,λi].
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on winning wq
i (si,si)=w+

i (si,si) for all qi is a best response. Hence, bids (4) for all i constitute
an equilibrium. Moreover, if w+

i (si,si) is identical for all bidders, efficiency is achieved.
We see that efficiency of the uniform-price auction requires a substantial amount of symmetry

in the model. In environments with interdependent values, the condition that w+
i (x,x)=w+

j (x,x)
for any i,j is unlikely to be satisfied without symmetry of value functions, capacities, and
distribution of types. By imposing several symmetry assumptions, we obtain an environment
that satisfies the Generalized Winner’s Curse, and we can apply Theorem 1 to determine when
there exists an efficient equilibrium.

Corollary 1. (Symmetric interdependent values model). Consider a flat demands setting that
additionally satisfies:

(i) vπ1

(
sπ1 ,...,sπI

)=v1(s1,...,sI ) for any permutation π1,...,πI of 1,...,I;
(ii) F

(
sπ1 ,...,sπI

)=F (s1,...,sI ) for any permutation π1,...,πI of 1,...,I;
(iii) (s1,...,sI ) are affiliated random variables; and
(iv) λi =λ, for all i (i=1,...,I).
Then, there exists an ex post efficient equilibrium of the uniform-price auction if, and only if,

1/λ is an integer.

The above corollary includes, as a special case, the independent private values model in which
individual values (or, equivalently, individual signals) are drawn from the same distribution. The
independent private values environment satisfies the Generalized Winner’s Curse even if the
agents’ values are drawn from different distributions, and thus the following further corollary
obtains.

Corollary 2. (Independent private values model). Consider a flat demands model, with
vi(si,s−i)=si and λi ≡λ for each i=1,...,I, and with independent but not necessarily identically
distributed Fi (·). There exists an ex post efficient equilibrium of the uniform-price auction if, and
only if, 1/λ is an integer.

4.2.2. Pay-as-bid auction. We now establish that in some situations in which efficiency
is impossible in the uniform-price auction, full efficiency is nevertheless possible in the pay-as-
bid auction. The intuition is straightforward: the inefficiency result in the uniform-price auction
is driven by the incentive for demand reduction due to price impact, in that a bidder who shades
his/her bids on subsequent units saves money on the purchase of earlier units. By contrast, this
incentive does not exist in the pay-as-bid auction with flat demands; a bidder who reduces his/her
bid for subsequent units (but holds his/her bids constant on earlier units) does not realize any
savings on his/her purchase of earlier units.

This is analogous to the situation of a monopolist deciding how much to produce. Recall
that the uniform-price auction is often referred to as a “non-discriminatory auction”, whereas the
pay-as-bid auction is referred to as a “discriminatory auction”. Just as monopoly without price
discrimination leads to social inefficiency while a monopolist with perfect price discrimination
may realize all gains from trade, a non-discriminatory auction will lead to inefficiency but a
discriminatory auction has the possibility of efficiency. The non-discriminating monopolist’s
marginal revenue curve lies strictly below his/her demand curve, except at zero quantity; the
perfectly discriminating monopolist’s marginal revenue curve may actually coincide with his/her
demand curve. We therefore obtain supply reduction in the former but not necessarily in the latter
situation.

To construct an efficient Bayesian–Nash equilibrium of the pay-as-bid auction, consider
bidders that have independent private values vi (s)=si and are ex ante symmetric: their signals
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si are i.i.d., and their capacities λi =λ are equal for all i. Let Ui(vi) denote the interim expected
utility of bidder i, and let Qi(vi) denote the interim expected quantity received by bidder i in an
efficient direct mechanism. Let m be the greatest integer less than 1/λ, let v−i

(m) denote the mth

order statistic of signals of all bidders except i, and let F−i
(m) (·) denote its distribution function.

Observe that efficiency requires that bidder i must obtain λ units of the good if vi>v−i
(m), 1−mλ

units of the good if v−i
(m+1)<vi<v−i

(m), and 0 units of the good if vi<v−i
(m+1). Thus,

Qi (vi)=λF−i
(m) (vi)+(1−mλ)

[
F−i
(m+1) (vi)−F−i

(m) (vi)
]
. (5)

Since the interim expected utility of the zero type must equal zero, the usual incentive-
compatibility argument implies that Ui (vi)=

∫ vi
0 Qi (x)dx. Now suppose that an efficient

equilibrium of the pay-as-bid auction exists. By Proposition 1, each bidder must use a flat-
bid function almost everywhere: bi(q,vi)=φi(vi). Using this bid function, an alternative way to
calculate the interim expected utility of bidder i is Ui (vi)=Qi (vi)[vi −φi (vi)]. Combining the
two expressions for utility gives the equilibrium bid. In Appendix A, we build on this argument
to prove the following:

Proposition 2. (Efficient pay-as-bid auction). If bidders have independent private values vi (s)=
si and are ex ante symmetric, i.e. if their signals si are i.i.d., and their capacities λi =λ are equal,
then

bi(q,vi)=φi (vi)=vi −
∫ vi

0 Qi (x)dx

Qi (vi)
(6)

constitutes an ex post efficient equilibrium of the pay-as-bid auction.

This positive result does not mean that the pay-as-bid auction should be preferred to uniform
pricing. It is well known that a first-price auction for a single indivisible item does not admit
an efficient equilibrium except in special settings. If bidders’ values are random variables that
are not identically distributed, then any equilibrium of the first-price auction will typically be
inefficient. These considerations from the first-price auction carry over to the current context;
the assumption in Proposition 2 that each bidder’s marginal value, vi, is drawn from the same
distribution should be viewed as essential. Proposition 3 treats the case of asymmetric bidders
and easily obtains a negative result.

Proposition 3. (Inefficient pay-as-bid auction). If bidders’ values are independent but not
identically distributed or if their capacities are unequal, then generically there does not exist
an ex post efficient equilibrium of the pay-as-bid auction.

4.3. Ambiguous rankings of conventional auctions

Early discussions of U.S. Treasury auctions conjectured that the uniform-price auction is superior
to the pay-as-bid auction when selling multiple units in terms of both revenue and efficiency. We
have shown above that this conjecture, which derives largely from the analysis of auctions in
which bidders have tastes for only a single unit, is flawed. In uniform-price auctions, rational
bidders strategically submit lower unit prices for larger quantities than for smaller quantities,
even when demands are flat, adversely affecting allocative efficiency. By contrast, the pay-as-
bid auction need not suffer from demand reduction, enabling it to yield full efficiency in some
situations where the uniform-price auction cannot.
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We shall now show that, in some circumstances, the pay-as-bid auction also raises more
revenue than the uniform-price auction. Theorem 2 demonstrates that the efficiency and revenue
rankings of the two auction formats are both ambiguous. We establish this theorem via two
positive results which identify two environments where revenue maximization coincides with
full efficiency. Our construction is based on the principle that in any flat-demands environment,
revenues are maximized (subject to no reserve price) by allocating items to the bidders in
descending order of their “marginal revenues”, MRi(vi)=vi − 1−Fi(vi)

fi(vi)
, up to their capacities λi

(see Ausubel and Cramton, 1999). We say that the marginal revenues are monotonic in values if
MR(vi)>MR(vj)⇐⇒vi>vj.

In the first environment, the pay-as-bid auction attains efficiency while the uniform-price
auction cannot. Consequently, it has the feature that the pay-as-bid auction dominates with respect
to both revenues and efficiency.

Proposition 4. (Dominance of pay-as-bid auction). Consider any symmetric flat-demands
environment in which the marginal revenues are monotonic in values and the bidders’capacities
satisfy λi =λ, for all i = 1, … , I. Then, the pay-as-bid auction dominates the uniform-price auction
in both revenue and efficiency. Furthermore, the dominance is strict if 1/λ is not an integer.

In the second environment, the uniform-price auction attains efficiency while the pay-as-bid
auction cannot.16 Here, the uniform-price auction dominates with respect to both revenues and
efficiency.

Proposition 5. (Dominance of uniform-price auction). Consider a flat-demands model in which
the bidders’ capacities satisfy λi =1 for all i=1,...,I. Let F be a cdf with support [v,v], let f
be its density, and let its marginal revenue be monotonic in values. Suppose that vi ∈[v,v) and

each bidder i=1,...,I has his/her value drawn independently from distribution Fi = F(v)−F(vi)
1−F(vi)

on
[
vi,v
]
. Then, the uniform-price auction dominates the pay-as-bid auction in both revenue and

efficiency. Furthermore, the dominance is strict if there are some i,j such that Fi �=Fj.

Let us illustrate the forces behind the dominance of the uniform-price auction in the following
example. Consider the asymmetric single-item17 auction environment in which v1 ∼U[η1,1],
v2 ∼U[η2,1], … , vI ∼U[ηI ,1], where 0≤η1<η2<...<ηI<1. Observe by an easy calculation
that marginal revenues are monotonic in values, and so revenues are maximized by allocating
the item to the bidder with the highest value. The uniform-price auction now collapses to the
second-price auction; bidding one’s true value, which is the unique equilibrium in undominated
strategies, attains full efficiency and consequently maximizes revenues. We will have established
that the equilibrium of the uniform-price auction dominates the equilibrium of the pay-as-bid
auction, with respect to both efficiency and revenues, provided we can show that the equilibrium
of the first-price auction with these distributions is inefficient. This is demonstrated as follows.

16. For simplicity of exposition, we state this and the next proposition assuming no type of bidder i has values
between 0 and vi. This violates our modelling assumptions that bidders draw signals from [0,1]I and the mapping from
signals to values is continuous. One can adapt the propositions to our modelling assumptions by shifting a small mass ε
of each bidder’s types to have values in [0,vi). The desired revenue ranking will still go through provided that the mass
ε is sufficiently small.

17. The essential aspects of this counter-example and the preceding proposition do not require a single-unit-demand
environment. Alternatively, we could assume that the bidders’ capacities satisfy λi =λ, for all i = 1, … , I, and 1/λ=M,
any integer. However, the efficient equilibrium of the uniform-price auction would generally no longer be unique; see,
for example, the discussion in Section 2.
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For I = 2 bidders, suppose that the first-price auction has an efficient equilibrium in undominated
strategies. For efficiency, bidder 2 must use a monotonic bidding strategy, and all types v1<η2
of bidder 1 must win the auction with zero probability. It follows that, for any ε>0, type η2 +ε
of bidder 2 must bid at least η2 −ε. Otherwise, types v1 ∈ (η2 − ε

2 ,η2) of bidder 1 could profitably

deviate by bidding η2 −ε. Define p= 1
2 (η1+η2)−η1

1−η1
, the probability that bidder 1’s type is less than

1
2 (η1 +η2). By bidding 1

2 (η1 +η2), every type of bidder 2 can assure himself/herself a pay-off of

at least 1
2 (η2 −η1)p>0. Consequently, for ε sufficiently small, type η2 +ε of bidder 2 does not

optimally bid at least η2 −ε, a contradiction. We conclude that there is no efficient equilibrium
of the first-price auction. A similar argument can be made with more than two bidders.

The above two propositions imply our second major result.

Theorem 2. (Ambiguous rankings). The efficiency and revenue rankings of the uniform-price
and pay-as-bid auctions are ambiguous.

To summarize, in general, the rankings of these two commonly used multi-unit auction formats
are ambiguous: depending on the environment, either format may outperform the other in relation
to efficiency or revenues. However, in all settings with symmetric buyers that we study, the pay-
as-bid auction dominates the uniform-price auction, an observation that we further develop in the
next section.

5. DIMINISHING MARGINAL VALUES

Apart from affecting bidders’ incentives in the presence of asymmetric information, as analysed
so far, another aspect of multi-unit demands not present in auctions of unit demands is the
possibility of decreasing marginal utility, which itself introduces new effects, even in settings
where agents’ valuation functions are identical. To study such effects we now allow bidders to
have marginal values that are decreasing in the quantity received. We assume that the bidders
have linear marginal utilities with the same slope and value for the good (si =v for all i). We
examine linear equilibria, in which bids bi(·,v) :R→R+ are linear in quantity and value.18 The
uniqueness of the linear equilibrium allows us to compare the auction formats in a consistent
way.19

18. The strategy space is not restricted to the class of linear bids; rather, in a linear equilibrium, it is optimal for
a bidder to submit a linear bid, given that the other bidders play linear strategies. For the uniform-price mechanism,
the linear (Bayesian) Nash equilibrium has been widely used in modelling financial, electricity, and other oligopolistic
markets. Hortaçsu’s (2002) study of the Turkish Treasury auction and Hortaçsu and Puller’s (2008) study of spot market
for electricity in Texas find that linear equilibrium provides a good description of the data. Analysis based on non-linear
equilibria is developed in Glebkin and Rostek (2014).

19. With unbounded support of supply, the linear equilibrium of the uniform-price auction is unique within a
large class of equilibria studied by Klemperer and Meyer (1989). They study a model of a procurement auction with an
exogenous downward-sloping demand, and show that when utilities are quadratic and uncertainty has unbounded support,
Nash equilibrium in the uniform-price auction is unique in the set of strategies that are piecewise differentiable functions.
Their result applies directly to our uniform-price model (with a vertical supply); thus, in our analysis for Generalized
Pareto distributions with ξ >0, the uniform-price equilibrium is unique within a large class. For distributions with ξ <0,
the set of Nash equilibria in the uniform-price auction is not determinate (but the linear equilibrium is unique). When the
utilities are not quadratic, apart from the result by Klemperer and Meyer (1989) that the set of equilibria is connected, no
results are available in the literature about the determinacy of equilibrium in the uniform-price auction. For the pay-as-bid
auction, Back and Zender (1993), Wang and Zender (2002), and Pycia and Woodward (2014) prove the uniqueness of
equilibrium.
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We identify the class of distributions that admits a linear equilibrium and provide revenue
rankings for all distributions in this class. Decreasing marginal utility changes bidding incentives
and equilibrium properties: bidders shade their bids even if they have no private information;
in particular, a traditional Bertrand-style argument does not apply and no auction format allows
the seller to extract full surplus, even in the limit as the number of bidders grows to infinity.
Moreover, even though equilibria are ex post efficient (i.e. Q(s)=Q∗(s)), seller revenue varies
across auction formats. In particular, with any finite number of bidders, the pay-as-bid auction
brings strictly higher expected revenue than the uniform-price auction.

5.1. Assumptions

Each bidder i’s marginal utility is affine with common slope ρ>0 and intercept v∈R, i.e.
∂u(qi)/∂qi =v−ρqi, where u(qi) is the quadratic utility of bidder i. The value v is random and
commonly known to all bidders (i.e. si =v for all i), but not the seller. Bidders are uncertain about
the supply Q being auctioned. The joint c.d.f., F(v,Q) of the value v and supply Q—which can
be correlated—is common knowledge and has non-degenerate support F(·|v). We make the usual
assumption for the quadratic model that for all values of v and Q in the support of F, the bidders
prefer more of the good rather than less; i.e. bidders are not satiated. This last assumption implies
that the support of Q is compact for any v.20

5.2. Linear equilibrium

If the marginal utility was constant, bidding bi(qi,v)=v would be a linear Nash equilibrium in
both uniform-price and pay-as-bid auctions. In such an equilibrium, bidders would not shade
their bids, and both auctions would be revenue maximizing; hence, they would also be revenue
equivalent. None of these predictions obtains when marginal utility is decreasing, ρ>0.

Our derivation exploits the following feature of linear equilibrium with downward-sloping
demands: given a profile of bid functions bj (·,v), j �= i, bidder i trades against an upward-
sloping, linear (residual) supply p=x+μiqi, where the intercept x=x(Q) is a deterministic
function of value v and quantity Q. Market clearing implies that qi +∑j �=i b

−1
j (p,v)=Q, and with

symmetric bids bj =bj′ the slope of the residual supply is given byμi =−(1/(I −1))∂bj (·,v)/∂qj
(Propositions 6 and 7 establish that the linear equilibrium is symmetric in both the uniform-price
and pay-as-bid auctions). For bidder i, the distribution of the intercept x derived from F(·|v) and
μi contains all of the pay-off-relevant information about the strategies of other bidders.

5.2.1. Uniform-price auction. The first-order condition equates marginal utility with
marginal payment at each realization of supply; i.e. order shading is

v−ρqi −bi =μiqi. (7)

Aggregating the bids of bidders other than i gives i’s residual supply, the slope of which—i’s
price impact—can be characterized as

μi =
⎛
⎝∑

j �=i

(
μj +ρ

)−1

⎞
⎠

−1

. (8)

20. The non-satiation assumption is not needed for any of the equilibrium characterizations in Section 5.2. We use
it only in Proposition 6 in Section 5.3.
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The unique, symmetric solution to I in equation (8) gives the equilibrium price impact of bidder
i equal to μi =ρ/(I −2), for I>2.21 Proposition 6 characterizes equilibrium bids.

Proposition 6. (Equilibrium in uniform-price auction). Suppose I>2. In the unique linear
equilibrium, the strategy of each bidder is

bi(qi,v)=v−
(

I −1

I −2

)
ρqi. (9)

Note that, with decreasing marginal utility, the equilibrium bids remain optimal ex post,
when supply is known.22 By best-responding with a downward-sloping bid, a bidder effectively
conditions on the realization of supply, Q, thereby hedging away supply uncertainty. Furthermore,
for any qi the bid bi(qi,v) affects a bidder’s pay-off only for the realization of Q= Iqi.

In contrast to the flat demands model—in which the winning bids do not affect the equilibrium
price unless capacities are heterogeneous, or 1/λ is not an integer, or supply is sufficiently large—
with decreasing marginal utility, the winning bids affect the revenue irrespective of the level
of supply. In linear equilibrium, bid shading v−ρqi −bi =qiμi is increasing in quantity, and
the corresponding bid function (9) is steeper than marginal utility. Note also that the payment
structure of the uniform-price mechanism together with the decreasing marginal utility imply that
even if the bidders were not to shade their bids, they would retain a strictly positive surplus.

5.2.2. Pay-as-bid auction. Unlike the uniform-price auction (and the Vickrey auction),
while a downward-slopping bid function allows conditioning on the realization of Q in the pay-
as-bid auction, linear equilibrium in the pay-as-bid auction is not an ex post equilibrium. The
value of bid bi(qi,v) affects the payment for all realizations of supply larger than Q. Thus, the
distribution of supply matters for trade offs and hence for optimal bids.

Let G(·) denote the c.d.f. and g(·) the density function of the distribution of per capita supply
Q/I , derived from the supply distribution F (·|v) (in the notation we suppress the dependence of G
and g on v). The inverse hazard rate of the equilibrium quantity is defined as h(·)≡ (1−G(·))/g(·).
When written to reveal the structure of bid shading and the role of market power, the equilibrium
first-order condition is

v−ρqi −bi =h(qi)[μi −∂bi(·)/∂qi]. (10)

For any qi, the marginal benefit—measured as the marginal utility net of the bid obtained in state
Q=qiI—is equal to the cost of increased payments in all states with higher realization of supply.
In the Euler equation (10), the cost is thus weighted by the inverse hazard rate h(·), which captures
probabilistic importance of higher realizations of supply.

21. The characterization of equilibrium by Wilson (1979) in the uniform-price auction includes the case of I =2
while assuming constant marginal utility. Non-existence of equilibrium with two bidders for decreasing marginal utility
is standard (e.g. Kyle, 1989).

22. Proposition 6 and its argument extend to a more general model with private information and interdependent
values, a setting we analysed in 2007 draft of the second of the papers subsumed by the present merged work. For
independent private values, no restrictions on (nondegenerate) distributions of values are required. For interdependent
values, Rostek and Weretka (2012) characterize the necessary and sufficient condition for the ex post property of
equilibrium (see also Vives, 2011. With private information, the equilibrium assignment is generically inefficient due to
the increasing-in-quantity bid shading: a high-value bidder is shading more than a low-value bidder at the market-clearing
price. Since quantity is assigned based on the bids, the high-value bidder wins too little and the low-value bidder wins
too much, relative to the efficient allocation. That is, uniform pricing gives large bidders incentives to make room for
smaller bidders. In multi-unit auctions—with flat or decreasing marginal utility—it is not shading per se but differential
bid shading that gives rise to inefficiency.
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The dependence of the optimal bid on the distribution of equilibrium quantity raises the
question of which distributions F (·|v) admit linear best responses. Since in a linear equilibrium
μi and ∂bi(·)/∂q are constants, the Euler equation (10) defines a linear schedule only if h(·) is
linear. Lemma 1 characterizes the class of all distributions F(·|v) that exhibit a linear inverse
hazard rate h(·).

Lemma 1. (Linearity of h(·)). The inverse hazard rate h(·) of per capita supply Q/I is linear if,
and only if, F(·|v) belongs to the class of Generalized Pareto distributions.

The c.d.f. of a Generalized Pareto distribution is given by F(Q|v)=1−(1+ξ Q−α
σ I )−

1
ξ , where

ξ ∈R is the shape parameter, α∈R is the location parameter, and σ I>0 is the scale parameter.
The per-capita supply Q/I is then distributed according to Generalized Pareto with the inverse
hazard rate h(q)=σ−ξα+ξ Q

I . The Generalized Pareto class encompasses distributions with
decreasing (ξ <0), constant (ξ=0), and increasing (ξ >0) inverse hazard ratios; and has a lower
bound of support given by α.23

Order shading in the pay-as-bid auction can now be understood through the properties of the
supply distributions. Namely, order shading inherits monotonicity in quantity through the inverse
hazard ratio and is decreasing, constant, and increasing in quantity for ξ <0, ξ=0, and ξ >0,
respectively. By contrast to the uniform-price auction, the bid in the pay-as-bid auction is shaded
at zero quantity, and for all distributions with compact support (ξ <0), the bid coincides with the
marginal utility at the upper end of the support, where the externality on the payments in higher
states vanishes. In the uniform-price auction, there is no shading at zero quantity, and bids are
strictly below the marginal utility at the upper-end quantity. Moreover, order shading in the pay-
as-bid auction need not be increasing in quantity. Except when ξ=0 (exponential distribution),
the Generalized Pareto class induces bids that can be flatter (ξ <0) or steeper (ξ >0) than the
marginal utility, which reflects the decreasing and increasing with quantity, respectively, relative
importance of higher states.

Observe that when the support of the equilibrium quantity is bounded away from 0, the optimal
bid is flat for small quantities and decreasing for large quantities, which is inconsistent with linear
bidding. To rule out flat-bid parts, we set the lower bound of the support of Q to zero.

Assumption 4 (Generalized Pareto distribution: location parameter). For any v, F(·|v) is a
Generalized Pareto distribution with location parameter α=0.

Without imposing bid symmetry, price impact in the pay-as-bid auction is

μi =
⎛
⎝∑

j �=i

(
ξμj

1−ξ + ρ

1−ξ
)−1

⎞
⎠

−1

. (11)

Unlike in the uniform-price auction (equation (8)), the price impact of bidder i can depend
negatively on the price impact of other bidders; this occurs when ξ <0. With higher market
power, other bidders are induced to shade more, which makes their inverse bids more elastic,
thereby reducing the price impact of bidder i. To close the model, we determine equilibrium μi

23. Whenever ξ <0, the support also has an upper bound, equal to −(I −ξ )/ξ . Among distributions with compact
support, ξ=−1 corresponds to a uniform distribution; for ξ=0 (exponential distribution) and ξ >0 (the class of Pareto
distributions), the support is unbounded. Conveniently, the linearity of an inverse hazard ratio is preserved under additive
(i.e. changing the location) or positive multiplicative (i.e. changing the scale) transformations of a random variable.
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from the first-order condition and bid symmetry,μi =ρ/(I(1−ξ )−1). Proposition 7 characterizes
equilibrium bids.24

Proposition 7. (Equilibrium in pay-as-bid auction). Suppose ξ < (I −1)/I. In the unique linear
equilibrium, the strategy of bidder i is

bi(qi,v)=v− (I −1)ρ

I(1−ξ )−1

(
qi + I

I −1
σ

)
. (12)

By Proposition 7, bid shading in the pay-as-bid auction depends on the distribution of supply.
Bid shading is proportional to the inverse hazard rate, and unlike in the case of flat demands
(Proposition 2) shading can decrease or increase in quantity, as determined by the sign of parameter
ξ . With compact support, ξ <0 and the bidding involves no shading at the upper end of the support
of the per-capita supply. At this quantity, there is no negative effect on the payments for higher
realizations of supply, and the bid coincides with the marginal value.

With decreasing marginal utility, bidders shade their value regardless of auction size, including
in the limit as I →∞; this contrasts with the uniform-price auction.Although in all auction formats
considered bidders have no impact on equilibrium price in the competitive auction limit (equations
(8) and (11)), uncertainty still affects order shading in the pay-as-bid auction (equation (10)), as
the bids still determine the payments for the items won. Observe further that, in markets with
ξ <0, equilibrium converges more slowly to the price-taking limit in the pay-as-bid than in the
uniform-price auction. The reduction of price impact via aggregation brought about by additional
participants in the pay-as-bid auction is partially offset by the steepening of individual bids.

5.3. Revenue rankings

This section presents comparative analysis of revenue in the uniform-price, pay-as-bid, and the
Vickrey auctions against the benchmark of total social surplus.25 In the Vickrey auction, for the
q-th unit, bidder i is charged the reported marginal value of the item by other bidders if q units are
reallocated efficiently to other bidders. Thus, the total Vickrey payment of bidder i is given by the
opportunity cost to others and corresponds to the area below his/her residual supply. We examine
strategic and competitive auctions, and consider risk-averse as well as risk-neutral preferences
of the bidders and of the seller. Assumption 4 is maintained.

Theorem 3 establishes expected revenue rankings: even though the optimal bidding in the
pay-as-bid auction depends on the supply distribution, the comparison of the mechanisms does
not. Let RU ,RD, and RV denote the equilibrium revenues in the uniform-price, pay-as-bid
(discriminatory), and Vickrey auction, respectively, and let TS be the total social surplus, all
in per capita terms.

24. This strategic interdependence explains why, in the pay-as-bid auction, a linear equilibrium exists even with
two bidders. However, when ξ exceeds (I −1)/I , linear equilibrium fails to exist because of the amplification of price
impacts, similar to their amplification in the uniform-price auction. The non-satiation assumption implies that ξ <0, but
our equilibrium characterization remains valid for non-negative ξ . The characterization of the set of (possibly non-linear)
Nash equilibria by Wang and Zender (2002) is provided for a class of supply distributions that is a strict subset of ours. We
focus on linear equilibria and Proposition 7 characterizes equilibrium bids in all environments that admit linear equilibria.

25. In our setting, the (sealed-bid) Vickrey auction is equivalent to the ascending-bid clinching auction proposed by
Ausubel (2004). Note also that the total surplus can be fully extracted. Recall that si =v for all i, and consider the following
mechanism. Bidders report types v̄1,v̄2,...,v̄I . Bidders with the highest reports, v̄i =max(v̄1,v̄2,...,v̄I ), receive Q/Ī units,

where Ī ≥1 is the number of the bidders with the maximal bid, and they pay their reported surplus v̄iQĪ − 1
2ρ
(
Q/Ī

)2
.

Bidders with lower reports receive and pay zero. By a Bertrand-type argument, the bidders bid truthfully in the unique
Nash equilibrium, and the seller extracts the entire surplus.
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Theorem 3. (Expected revenue ranking). In the unique linear equilibrium, for any v,

E(TS|v)>E(RD|v)>E(RV |v)>E(RU |v), (13)

whenever equilibria exist.

Consistent with a conjecture often invoked in the literature, the uniform-price design fosters
more aggressive bidding in all the environments considered (see the proof of the theorem).
Nevertheless, the benefit from smaller expected bid shading is not sufficient for the uniform-price
to outperform the pay-as-bid auction in terms of seller’s revenue. Dominance of the pay-as-bid
auction with symmetric bidders is consistent with Proposition 4 and Example IV.26

The revenue dominance of the Vickrey auction over the uniform-price auction can be
strengthened: the Vickrey auction is preferred by the seller regardless of the realization of v
and Q, and, hence, regardless of the seller’s risk attitude.

Proposition 8. (Ex post revenue ranking). For any realization of v and Q, the seller’s revenue
satisfies TS ≥RV ≥RU, and both inequalities are strict whenever Q>0. In particular, for any
strictly increasing utility function of the seller ū(·), in the unique linear equilibrium,

E(ū(TS)|v)>E

(
ū
(

RV
)
|v
)
>E(ū

(
RU
)
|v). (14)

Since the equilibria of the Vickrey auction and the uniform-price auction are both ex post
equilibria, the ex post dominance of the Vickrey auction over the uniform-price auction does
not depend on the distributional assumptions. Furthermore, the dominance is consistent with
Example IV. In contrast to the Vickrey and uniform-price formats, the seller’s preference for the
pay-as-bid does depend on his/her risk attitude as shown in Proposition 9.

As the number of bidders increases, the expected revenue increases both absolutely and as a
fraction of the expected total surplus E(TS|v). The ranking from Theorem 3 must hold at least
weakly in the limit as I →∞ (a competitive limit). In fact, if we increase the number of bidders
while keeping the distribution of per capita supply fixed, then the three auctions yield the same
expected revenue in the competitive limit. Nevertheless, the common limit revenue does not
extract the total surplus of E(TS|v); fraction σρ/(v(1−2ξ)−σρ)>0 of the total surplus is not
extracted,

E(TS|v)> lim
I→∞E(RV |v)= lim

I→∞E(RU |v)= lim
I→∞E(RD|v).

In the competitive limit, the residual supply of each bidder is perfectly elastic, and in the uniform-
price auction, bidding becomes truthful, as in the Vickrey auction. With pay-as-bid pricing, by
contrast, bidders still shade their marginal utility (see equation (12)). Thus, the reasons underlying
the seller’s inability to extract surplus differ across the mechanisms: in the pay-as-bid auction, it
is due to bid shading, whereas in the other two designs it is attributed to the payment structure
itself, which leaves part of surplus to the bidder.27

26. In a study of Turkish Treasury auctions, Hortaçsu and McAdams (2010) found that the pay-as-bid auction leads
to higher revenues than the revenue obtainable from the Vickrey auction, which the authors attributed to the allocational
inefficiency in a pay-as-bid auction with heterogenous bidders. Our result shows that the pay-as-bid auction brings higher
revenue than the Vickrey auction even when the allocation is efficient in both.

27. In a study of large auctions, Swinkels (2001) obtained expected-revenue equivalence between the uniform-price
and pay-as-bid auctions in an indivisible good, multi-unit demand setting with independent private values. Our model is
a continuous-bid, complete information counterpart of his setting.

 at U
niversity of W

isconsin-M
adison L

ibraries on O
ctober 27, 2014

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


[18:01 23/7/2014 rdu023.tex] RESTUD: The Review of Economic Studies Page: 25 1–35

AUSUBEL ET AL. MULTI-UNIT AUCTIONS 25

Less-than-full surplus extraction, even with symmetric information, is another instance of
new effects brought by diminishing marginal utility that will hold outside of the setting analyzed
here, in any equilibrium with downward-sloping bids. The less-than-full surplus extraction is
also different from large auctions in single-unit demand settings where full surplus extraction,
and hence revenue equivalence, has been established by the literature on information aggregation
(cf. Pesendorfer and Swinkels, 1997; Kremer, 2002). One insight from our simple setting with
symmetric information is that the competitive-market result does not follow from the standard
revenue equivalence theorem for unit demands. In all three auction formats, the allocation is
efficient, while the revenue is strictly lower than the total surplus, which can be extracted (see
note (25)).

With a finite number of bidders, a risk-averse seller faces a risk-revenue trade-off when
selecting an auction format. First, consider the competitive limit in which no such trade-off arises.
By the equality of expected revenue in the competitive limit, a risk-neutral seller concerned about
the expected revenue will be indifferent among the three mechanisms. Proposition 9 asserts that
a risk-averse seller strictly prefers the uniform-price auction to the pay-as-bid auction when there
are sufficiently many bidders and the bidders’ marginal utility is decreasing.

Proposition 9. (SOSD). For any strictly concave increasing utility function ū(·), in the unique
linear equilibrium, there exists Ī such that for any I ≥ Ī ,

E(ū(TS)|v)>E(ū(RV )|v)>E(ū(RU )|v)>E(ū(RD)|v).

In the limit,

lim
I→∞E(ū(TS)|v)> lim

I→∞E(ū(RV )|v)= lim
I→∞E(ū(RU )|v)> lim

I→∞E(ū(RD)|v).

Theorem 3 and Proposition 9 jointly define a trade-off faced by a seller when choosing an
auction design in markets with strategic bidders. With sufficiently large I , the pay-as-bid auction
gives higher expected revenue but also higher risk than the uniform-price auction. More generally,
for any number of bidders, risk-averse preferences exist for which either format is strictly preferred
by the seller: For any I sufficiently high, the c.d.f. of the revenue induced by the uniform-price
auction crosses (once) the c.d.f. of the revenue in the pay-as-bid auction from below (as shown in
the proof of Proposition 9). At the same time, Theorem 3 implies that the second-order stochastic
dominance does not extend to auctions with a small number of bidders. Our results suggest that
the uniform-price auction is more likely to be superior in markets with many bidders, whereas
the pay-as-bid might be favoured in small markets.

5.4. Entry

An important lesson from auction theory with single-unit demand is that a seller should favour
auction formats that encourage greater participation (e.g. Bulow and Klemperer, 1996). With an
additional bidder, other participants bid more aggressively. This recommendation is even more
relevant in the context of divisible good auctions with decreasing marginal utility: apart from
the competitive effect, additional participants increase the total surplus in the auction, even if
bidders have identical marginal utilities. For quick intuition, consider a seller offering two units
of a good to identical bidders with utility function u(q)=2q−0.5q2. Allocating the two units
to one bidder brings the total surplus of 2, but allocating the good to two bidders so that each
bidder receives one unit, increases the total surplus to 3. If the identical demands were flat, the
total surplus would be independent of the number of bidders.
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Let us allow an infinite pool of potential entrants in the model. Having learned v, the bidders—
simultaneously or sequentially—choose whether or not to join an auction. Entry incurs a fixed cost
c. Given the exogenous distribution of Q, per capita supply depends on the number of entrants.
Consider pure strategy Subgame Perfect Nash equilibria such that the entrants submit linear bids
in the bidding stage. Barring indifference, the number of entrants equals the maximal integer for
which the expected bidder’s pay-off is greater than c.

Our main observation regarding entry is that, in any equilibrium, the uniform-price auction
encourages weakly more entry than the Vickrey auction, which in turn encourages weakly more
entry than the pay-as-bid auction; there exist values of parameters for which the inequalities are
strict. In equilibrium, the uniform-price auction leaves more surplus to the bidders; given the fixed
number and symmetry of the bidders, the allocations in all auction formats are Pareto efficient,
and the total surplus is shared between the bidders and the seller. The ranking of entry then follows
from the revenue rankings of Theorem 3. The weak relative advantage of the uniform-price design
in encouraging entry is consistent with the evidence from the U.S. Treasury experiment.

The entry advantage of the uniform-price auction turns out to be sufficient to reverse the
revenue rankings established for auctions with a fixed number of participants. A small difference
in the number of bidders translates into a significant revenue change, due to the surplus effect
as well as the competitive effect. As a result, there are parameter values such that the uniform-
price auction dominates the other auction formats in both expected revenue and participation.
Thus, Friedman’s conjecture about participation margin giving an advantage to the uniform-price
auction holds even without information acquisition.

Ignoring the integer problem, one can show that the endogenized number of participants
exceeds the Pareto efficient auction size in all three auction formats—an argument in favour of
the pay-as-bid auction. In all auction formats, excess entry arises because each bidder ignores
the negative externality of his/her participation on the net utility of other bidders. For auctions of
single items, Levin and Smith (1994) demonstrate that auctions encourage entry levels that are
excessive from a social point of view.

6. CONCLUSIONS

Multi-unit auctions differ from single-unit auctions in essential ways. Most fundamentally, the
classic efficiency result for the second-price auction of a single item does not extend to the uniform-
price auction of many items. In the uniform-price auction, winning bidders affect the market price
with positive probability. Hence, bidders have incentives to reduce their demands, upsetting both
the strategic simplicity and the efficiency of uniform-price auctions. By shading his/her bid for
marginal items, the bidder is able to reduce the expected price paid on inframarginal items. The
more one buys, the greater the incentive to shade. As a result, large bidders will sometimes lose
against small bidders on items that the large bidders value more highly.

In this article, we prove the general inefficiency of the uniform-price auction. Differential
incentives to shade bids arise whenever a winner influences the market-clearing price with positive
probability. The only cases that escape our inefficiency result are: (i) pure common values, in
which all assignments are efficient; and (ii) single-unit demands and analogous cases, where a
bidder determines the price only when the bidder wins zero quantity.

An implication of the inefficiency result is that there is a class of environments (namely,
symmetric private value auctions) in which the symmetric equilibrium of the oft-criticized pay-
as-bid auction dominates all equilibria of the uniform-price auction in both efficiency and seller
revenues. However, relaxing the symmetry and risk-neutrality assumptions leads to a class
of environments, where the uniform-price auction outperforms the pay-as-bid auction in both
efficiency and revenues. Determining the better pricing rule is, therefore, an empirical question.
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The practical importance of demand reduction is easily seen in spectrum auctions. Our
theorems do not directly apply to the spectrum auctions, since the FCC and others used a
simultaneous ascending auction and, often, the licences are not perfect substitutes. Hence, the
analogy between our setting and the spectrum auctions is crude. Still, based on the experience of
many spectrum auctions around the world, we conclude that demand reduction is of fundamental
importance to bidders. Indeed, demand reduction is likely more pronounced in simultaneous
ascending auctions than in sealed-bid auctions, since the bidders can propose divisions of the
licences through their early bids.28 The October 1999 German auction of GSM (Global System
for Mobile communications) spectrum, in which 10 spectrum blocks were offered and the two
principal bidders won five apiece, illustrates this behaviour most clearly. The auction lasted just
two rounds—one to propose the split and one to accept it.

Direct evidence of strategic demand reduction was observed in the FCC’s Nationwide
Narrowband Auction. In round 11, PageNet decided to cut back from bidding on three large
licences to two (Cramton, 1995). PageNet felt that, if it continued to demand a third large licence,
it would drive up the prices on all of the large licences to disadvantageously high levels. Hence,
it made sense to reduce its demand to two, even though the auction price had not yet reached
PageNet’s incremental value for a third large licence. In making this decision, it was essential for
PageNet to anticipate the effect of demand reduction on prices.

Anticipating price movements as a function of one’s demand is often guesswork. Still the
consequences of guessing wrong can be dramatic, as was illustrated in the August 2000 German
auction of third-generation (3G) mobile wireless licences. After round 127, Deutsche Telekom
could have likely brought the auction to a rapid close by reducing its demand from three licence
blocks to two. Instead, Deutsche Telekom continued bidding for three blocks for some 40 more
rounds, ultimately buying the two licence blocks that it could have bought earlier, but paying
about $2 billion extra.

As in experiments, real-world bidders learn from their mistakes. Three months later, in
November 2000, the Austrian 3G auction was held, with essentially the same rules and essentially
the same players as the German auction. The starting prices in the Austrian auction were one-
seventh of the final German prices (on a population-adjusted basis) and there were sufficiently
few bidders that all could be winners if they reduced their demands. All but one of the bidders
engaged in demand reduction at the first opportunity and there was a wide presumption that the
one holdout, government-owned Telekom Austria, was under severe political pressure to prevent
the auction from ending. Even then, demand reduction did well at predicting the outcome: the
auction ended in just 14 rounds, at prices only 15% above the low starting prices, and with most
participants shading their marginal bids well below their presumed values.

Another important application is in wholesale electricity markets. With only a few exceptions,
these are uniform-price auctions conducted daily by the system operator. Our theory applies
directly, accounting for the strategic supply reduction in response to uniform pricing in a
procurement auction. The incentive to inflate bids grows with the quantity supplied, since the
higher price is enjoyed on the larger quantity. Wolfram (1998) found compelling evidence of
supply reduction in the early years of the U.K. electricity market. In 2001, the U.K. switched
from uniform pricing to pay-as-bid pricing. The study by Borenstein, Bushnell, and Wolak (2002)
of why electricity expenditures in California’s restructured wholesale market rose from $2 billion
in summer 1999 to $9 billion in summer 2000 found that over one-half of this increase was
attributable to market power. In response to the crisis, the California Power Exchange considered

28. See, e.g.Ausubel and Schwartz (1999).
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switching from uniform to pay-as-bid pricing. Unlike in the U.K., the proposal was rejected
(Kahn et al., 2001).

We present this experience from electricity and spectrum markets to highlight the practical
importance of demand reduction, rather than necessarily as an argument against the uniform-price
auction. Uniform pricing has several desirable properties, including: (i) it is easily understood
in both static and dynamic forms; (ii) it is fair in the sense that the same price is paid by
everyone; (iii) absent market power it is efficient and strategically simple (“you just bid what you
think it’s worth”); and (iv) the exercise of market power under uniform pricing favours smaller
bidders. While the first three points are commonly made in practice, it is the fourth point that
may decisively favour uniform pricing in many practical settings, including some spectrum and
electricity markets.

Competition and innovation are often fostered by market designs that encourage the entry
and success of small participants. Pay-as-bid pricing disadvantages small bidders: profits depend
critically on the bidder’s ability to guess the clearing price, and this ability grows with size. In
sharp contrast, uniform pricing levels the playing field by weakening the penalty for guessing
wrong. At the same time, the current article has shown that uniform pricing also creates an
incentive for large bidders to make room for their smaller rivals.

In his original proposal, Milton Friedman (1960, p. 65) recognized the informational
levelling effect of uniform pricing: “This alternative, in any of its variants, will make the
price the same for all purchasers, reduce the incentive for collusion, and greatly widen the
market.” We add to Friedman’s effect the demand reduction effect, which cuts in the same
direction. The Treasury auction experiment provides empirical support for the prediction
that uniform pricing widens market participation: the five-firm concentration ratio declined
by 10 percentage points in auctions that were changed from pay-as-bid to uniform pricing
(Malvey and Archibald, 1998). The uniform-price auction is not a panacea, since unlike its
unit-demand counterpart it inevitably yields inefficiency, whereas some alternative multi-unit
designs do not (see Vickrey, 1961; Ausubel, 2004). Nonetheless, good market design should
encourage the evolution towards more competitive market structures, and uniform pricing does
just that.

APPENDIX A. PROOFS

Proof of Proposition 1 (Efficient Bids). First, we demonstrate that, in an ex post efficient equilibrium, each bidder must
use a flat-bid function, almost everywhere in types. Ex post efficiency and the simplifying assumptions we imposed
on bidders’ capacities λi require that bidder i wins qi =λi if bidder i has the highest type and qi =0 if bidder i has the
lowest type. Take any s′

i>si. With positive probability, all other bidders’ types, s−i, lie strictly between si and s′
i and hence

efficiency requires that s′
i must winλi and si must win 0, and thus bi(λi,s′

i)≥bi(0,si). Defineφi (si)= 1
2 [bi(0,si)+bi(λi,si)];

since bids are downward-sloping, the preceding observation implies that φi (·) is a weakly increasing function. Also define
Si ={si ∈ (0,1)|φi (·) is differentiable at si}, and observe that that bi(0,si)=bi(λi,si) for every si ∈Si. Furthermore, since
a monotonic function is differentiable almost everywhere, the measure of Si equals one for all i=1,...,I . Since bi(·,si)
is weakly decreasing in q, we conclude that bi(·,si) is constant in q for almost every type si.

Secondly, bidders use symmetric bid functions almost everywhere in types. Otherwise, there exist i �= j and x∈Si ∩Sj

such that φi (x)<φj (x). Using the continuity of φi (·) and φj (·) at x, there exist si ∈Si and sj ∈Sj such that si>x>sj but
φi (si)<φj

(
sj
)
. Then, when all other bidders’ signals, s−i,j ≡{sh}h �=i,j , lie strictly between si and sj (a positive-probability

event), si must win λi and sj must win 0, but this cannot happen if bi(·,si)=φi (si)<φj
(
sj
)=bj(·,sj). We conclude that

φi (x)=φj (x) for almost every type x, and we write φ(x) for the common bid.
Thirdly, φ(·) is strictly increasing. Otherwise, there exist x′>x such that φi (x)=φj

(
x′), and therefore si,s′

i ∈Si such
that x′>s′

i>si>x and φ(s′
i)=φ(si). We can then repeat the same argument as above: when all other bidders’ types, s−i,

lie strictly between si and s′
i (a positive-probability event), s′

i must win λi and si must win 0 for efficiency. But this cannot
happen if bi(·,s′

i)=bi(·,si).
The claim for the uniform-price auction follows from the lemma below. ‖
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Lemma 2. Suppose that there exists an ex post efficient equilibrium of the uniform-price auction in a flat demands
environment that exhibits the Generalized Winner’s Curse. Then, the expected value to bidder i conditional on winning a
small quantity is independent of i, i.e. there exists w+ (·,·) such that w+

i (x,x)=w+ (x,x), for every bidder i=1,...,I and
every x∈[0,1]. Moreover, every bidder i uses the symmetric flat-bid function bi(q,si)=φ(si)=w+ (si,si), for every type
si ∈[0,1] and every quantity q∈[0,λi].

Proof For each i=1,...,I , define

J−i ≡arg max
I ′⊂{1,...,I}/i

⎧⎨
⎩
∑
j∈I ′
λj|
∑
j∈I ′
λj<1

⎫⎬
⎭ and Li ≡1−

∑
j∈J−i

λj . (A.1)

If there are multiple possible sets J−i, select one arbitrarily. J−i is a combination of bidders other than bidder i
with a combined capacity 1−Li closest to, but strictly less than, one (the total quantity available). Note that Li>0; if in
equation (A.1) Li>λi, redefine Li ≡λi. By the proven above part of Proposition 1, in an efficient equilibrium, all bidders j
submit flat-bid schedules bj(q,sj)=φ

(
sj
)

with probability one. Consider any bidder i, any quantity q∈ (0,Li), and almost
any s−i ∈(0,1)I−1. Then, by equation (A.1), for any combination J of opponents of bidder i, we have q+∑j∈J λj �=1

establishing that bidder i’s bid is not pivotal. Note that wq
i (x,y) and f q

i (y|x) are constant in q on the interval (0,Li), for every
x,y∈ (0,1); consequently, wq

i (x,y)=w+
i (x,y)≡ limq↓0 wq

i (x,y) and f q
i (x|y)= f +

i (x|y)≡ limq↓0 f q
i (x|y) for all q∈ (0,Li).

Therefore, bidder i’s optimal strategy for q∈[0,Li) is to bid b which maximizes

Li

∫ φ−1(b)

0
[w+

i (x,y)−φ(y)]f +
i (y|x)dy. (A.2)

Recall that φ(·) from Proposition 1 is monotonic, and hence continuous almost everywhere. Consider any x at which φ(·)
is continuous. Also recall that for any such x, bi(q,x)=φ(x) for all quantities q∈[0,λi]. Next, observe that the integrand
of equation (A.2) is independent of b and, in fact, b enters into the expression only through the upper limit, φ−1 (b), on
the integral. Thus, if the bid b=φ(x) is optimal, it must be the case that the integrand, evaluated at y=φ−1 (b)=x, equals
zero. (Otherwise, since the integrand of equation (A.2) is continuous in y when evaluated at y=x, there must exist ε>0
such that either the integrand is positive for all y∈ (x,x+ε) or the integrand is negative for all y∈ (x−ε,x); either of these
conclusions would contradict the optimality of b=φ(x).) But then, φ(x)=w+

i (x,x). Moreover, this conclusion holds for
every bidder, so that w+

i (si,si)=w+
j (si,si)≡w+(si,si), for all bidders i,j=1,...,I , and for almost every type si ∈[0,1].

Finally, φ(si)=w+
i (si,si) is strictly increasing in si, so bi(q,si)=φ(si)=w+(si,si) for every type si. ‖

Proof of Theorem 1 (Inefficiency of uniform-price auction). Notice that if λi =λ and 1/λ is an integer, then wq
i (x,x) is

constant on (0,λ1] and equal to w+
i (x,x). With w+

i (x,x)=w+(x,x) for all i, bids bi (q,v)=w+(x,x) for all i constitute a
Bayesian–Nash equilibrium in which, in a uniform-price auction, items are assigned to the bidders with highest values
with probability one.

We have already proven part of the converse statement in Lemma 2: in any ex post efficient equilibrium, w+
i (x,x)

does not depend on bidder i. It remains to be shown that efficiency implies that λi =λ and 1/λ is an integer. Let us rename
the bidders so that λ1 ≥λ2 ≥ ...≥λI .

By way of contradiction, suppose that there exists an ex post efficient equilibrium of the uniform-price auction,
but that either λi =λ, where 1/λ is not an integer, or λi �=λj for some i �= j. By Lemma 2, all bidders i=1,...,I use
the bid function bi(q,x)=φ(x)=w+(x,x), for all quantities q∈[0,λi]. Take L1 defined in equation (A.1). To obtain a
contradiction in the remainder of the proof, we construct L̄1 ∈ (L1,λ1] such that it is not a best response for bidder 1 to
bid b1(q,x)=φ(x)=w+(x,x), for any q∈ (L̄1,λ1].

Let us begin by observing that interval (L1,λ1] is non-empty. If capacities are equal, λi =λ for all i, then L1 =1−mλ
where m is the greatest integer such that mλ<1; since 1/λ is not an integer, we conclude that L1<λ. If capacities are
not equal, and hence λ1>λI , define j′ =max{j|j /∈J−1} where J−1 is defined in equation (A.1). Observe that j′ �=1, since∑I

k=2λk ≥1. There are two cases: λj′ <λ1 (Case I) and λ′
j =λ1 (Case II). In Case I, consider the set J−1 ∪{j′}. By the

definition of L1, we have 1−L1 +λj′ ≥1. In Case II, observe that j′ �= I , so I ∈J−1. Consider the set {j′}∪J−1\{I}. By the
definition of L1, we have 1−L1 +λj′ −λI ≥1. In each case, this implies that L1<λ1, as desired.

Next, define

J ≡arg min
I ′⊂{2,...,I}

⎧⎨
⎩
∑
j∈I ′
λj|
∑
j∈I ′
λj>1−λ1

⎫⎬
⎭ and L̄1 ≡1−

∑
j∈J

λj . (A.3)

If there are multiple possible sets J , select one arbitrarily. Since the previously defined set J−1 has the property that∑
j∈J−1

λj>1−λ1, it satisfies the strict inequality restriction in problem (A.3). It follows that
∑

j∈J λj ≤∑j∈J−1
λj ,

implying that L1 ≤ L̄1<λ1. (For the case of λi =λ, where 1/λ is not an integer, L1 = L̄1 =1−mλ.) Now, τ q
1 (s−1), Fq

1 (y|x),
f q
1 (y|x) and wq

1 (y,x) are constant in q for q∈ (L̄1, λ1], and we write τ 2
1 (s−1), F2

1 (y|x), f 2
1 (y|x) and w2

1 (y,x) for
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these values, respectively. Also, τ q
1 (s−1), Fq

1 (y|x), f q
1 (y|x) and wq

1 (y,x) are constant in q for q∈ (0,L̄1), and we write
τ 1

1 (s−1), F1
1 (y|x), f 1

1 (y|x) and w1
1 (y,x), respectively, for these values. In terms of notation introduced in Section 4.1,

w1
1 (x,x)=w+

1 (x,x).

Given type x∈ (0,1], consider an alternative strategy for bidder 1 of bidding b̂i (q,si)=φ(x) for q∈[0,L̄1], and bidding
b̂i (q,si)=β≤φ(x), for q∈ (L̄1,λ1]. Let �1(β) denote the expected pay-off from this two-step strategy, given that the
other bidders are bidding bi(q,·)=φ(x). We show that d�1(β)/dβ evaluated at β=φ(x) is negative, which implies that
bidder 1 can strictly improve his/her pay-off by using the two-step bid function with β<φ(x), rather than bidding φ(x)
for all q∈[0,λ1].

The three regions of bidder types to consider in calculating �1(β) are as follows:
1.φ−1 (β) is greater than τ 2

1 (s−1). Then, bidder 1 wins quantity λ1, and τ 2
1 (s−1) determines the price. The contribution

to the expected pay-off is

λ1

∫ φ−1(β)

0

[
w2

1 (x,y)−w+
1 (x,y)

]
f 2
1 (y|x)dy. (A.4)

2. φ−1 (β) is between τ 1
1 (s−1) and τ 2

1 (s−1). Then, bidder 1 wins quantity L̄1, and β determines the price. The
contribution to the expected pay-off is

L̄1

∫ φ−1(β)

0

∫ 1

φ−1(β)

[
E

(
v1|s1 =x,τ 2

1 (s−1)=y,τ 1
1 (s−1)=z

)
−β
]

f 2,1
1 (y,z|x)dydz, (A.5)

where f 2,1
1 (y,z|x) denotes the joint density of τ 2

1 (s−1)=y and τ 1
1 (s−1)=z, conditional on s1 =x.

3. φ−1 (β) is less than τ 1
1 (s−1). Then, when x is greater than τ 1

1 (s−1), bidder 1 wins quantity L̄1, and τ 1
1 (s−1)

determines the price. The contribution to the expected pay-off is

L̄1

∫ x

φ−1(β)

[
w1

1 (x,z)−w+
1 (z,z)

]
f 1
1 (z|x)dz.

�1(β) is the sum of these three integrals. Taking the derivative of each with respect to β when evaluated at β=φ(x) and
combining and simplifying terms yields

d�1

dβ
=−L̄1 Pr

{
τ 1

1 (s−1)<x<τ 2
1 (s−1)

}
+(λ1 −L̄1

)
φ−1′

(φ(x))
[
w2

1 (x,x)−w+
1 (x,x)

]
f 2
1 (x|x). (A.6)

Observe that the first term of the right-hand side of equation (A.6) is strictly negative, while the second term is weakly
negative (since w2

1 (x,x)≤w+
1 (x,x), by the Generalized Winner’s Curse assumption). Hence, bidder i=1 strictly gains

by bidding β<φ(s1) for q∈ (L̄1,λ1], yielding a contradiction. ‖
Proof of Proposition 2 (Efficient pay-as-bid auction). The argument in the text showed that a necessary condition for an
ex post efficient equilibrium of the pay-as-bid auction is equation (6). If vi and vj are i.i.d. and λi =λj , then by equation
(5), Qi(·)=Qj(·) and thus φi(·)=φj(·)=φ(·). Furthermore, φ(·) is strictly monotone increasing, so every bidder using the
same bid function, φ(·), leads to an efficient allocation. Finally, note that every bidder using φ(·) from (6) constitutes a
Bayesian–Nash equilibrium. ‖
Proof of Proposition 3 (Inefficient pay-as-bid auction). Suppose there exist bidders i and j such that the associated
distribution functions, Fi(·) and Fj(·), are not identical.As before, a necessary condition for an ex post efficient equilibrium
is that bidder i’s bid function be given by φi(·), defined by the right-hand side of equation (6). At the same time, another
necessary condition is that bidder j’s bid function be given by φj(·), defined by replacing F−i

(m) and F−i
(m+1) with F−j

(m) and

F−j
(m+1) on the right-hand side of equation (6). For generic Fj �=Fi, the implied φj(·) �=φi(·) on sets of positive measure,

contrary to Proposition 1. We conclude that there cannot exist any ex post efficient equilibrium. Similarly, if the capacities
λi are not all equal, then equation (6) again implies that, if λj �=λi, then φj �=φi on sets of positive measure. Hence, there
again cannot exist an ex post efficient equilibrium. ‖
Proof of Proposition 4 (Dominance of pay-as-bid auction). In such an environment, revenues are maximized by
allocating items in a descending order of their values, that is revenue maximization coincides with efficiency. Since
the pay-as-bid auction inherits the symmetric equilibrium of the first-price auction for a single item, it attains full
efficiency and consequently maximizes revenues proving the first part of the proposition. Now, if 1/λ is not an integer,
then Theorem 1 and Proposition 2 tell us that there is no efficient equilibrium of the uniform-price auction; and using
the logic above, there is no equilibrium of the uniform-price auction that maximizes revenues. In particular, this means
that the equilibrium of the pay-as-bid auction dominates all equilibria of the uniform-price auction with respect both to
efficiency and revenues. ‖
Proof of Proposition 5 (Dominance of uniform-price auction). The marginal revenues are monotonic in values as
MRi(v)=v− 1−Fi(v)

fi(v) =v− 1−F(v)
f (v) for all i=1,...,I . Thus, revenues are maximized by allocating the item to the bidder
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with the highest value. In the uniform-price auction, bidding one’s true value is the unique equilibrium in undominated
strategies, and this equilibrium attains full efficiency and consequently maximizes revenues, proving the first part of the
proposition.

To prove the second part of the proposition, suppose that two of the bidders have different distributions of values.
We will have established that the equilibrium of the uniform-price auction dominates the equilibrium of the pay-as-
bid auction, with respect to both efficiency and revenues, provided we can show that the equilibrium of the pay-as-bid
auction is inefficient. This is demonstrated as follows. Consider the case of I =2 bidders; we may then assume that v1<v2.
Suppose that the pay-as-bid auction has an efficient equilibrium in undominated strategies. For efficiency, bidder 2 must
use a monotonic bidding strategy, and all types v1<v2 of bidder 1 must win the auction with zero probability. It follows
that, for any ε>0, type v2 +ε of bidder 2 must bid at least v2 −ε. Otherwise, types v1 ∈ (v2 − ε

2 ,v2) of bidder 1 could
profitably deviate by bidding flat v2 −ε. Let p be the probability that bidder 1’s type is less than 1

2 (v1 +v2). By bidding
1
2 (v1 +v2), every type of bidder 2 can assure himself/herself a pay-off of at least 1

2 (v2 −v1)p>0. Consequently, for ε
sufficiently small, type v2 +ε of bidder 2 does not optimally bid at least v2 −ε, a contradiction. We conclude that there is
no efficient equilibrium of the pay-as-bid auction. A similar argument can be made with more than two bidders. ‖
Proof of Proposition 6 (Equilibrium in uniform-price auction). Statisticμi and c.d.f. of x, Gi(·), contain all of the payoff-
relevant information about bids bj (·,v), j �= i. A linear equilibrium is obtained in three steps: (i) we find the best response
to the residual supply function, taking μi and Gi(·) as given; (ii) given the best response, we determine μi; and finally,
(iii) we derive Gi(·) from F(·).29 In the first step, we discretize the distribution of intercept x by partitioning its support
into a countable number of intervals of length 	x. The discrete realization of the supply function—which defines a state
and is indexed by s—originates at the mid-point of the corresponding interval. The probability of state s, π s, is equal to
the probability of the interval assigned by the distribution function Gi(·). Then, as the length of the interval goes to zero,
	x→0, the limit bid constitutes a best response to a continuously distributed residual supply.

For a bidder i who faces a residual supply with slope μi, consider a small deviation from equilibrium bid function
around the bid-quantity pair (b,q) observed in equilibrium given state s. The deviation increases the equilibrium quantity
by dq and the equilibrium price by dp=μidq in state s; in no other state are the stop-out prices or equilibrium quantities
altered. This translates into a marginal utility gain by dq×π s ×(v−ρq). The deviation increases the payment for state
s in two ways: (i) more units are purchased at price b, which yields the change in payments of dq×b and (ii) the price
increases for all units q, and hence the payment increases linearly by q×μidq. At the optimum, marginal benefit and
cost are equal, dq×π s ×(v−ρq)=dq×π s ×(b+μi ×q). The Euler equation holds for any 	x and, by the Maximum
Theorem, in the limit as 	x→0. This gives bid function bi (q,v)=v−(ρ+μi)q; denote its slope by ψi =ρ+μi. Since
ρ>0 and μi ≥0, we conclude that ψi>0 and bi (·,v) are invertible and the inverse bids are b−1

i (p,v)= v−p
ψi

. From the

market clearing condition qi +∑j �=i
v−p
ψj

=Q, and hence the price impact of bidder i can be expressed as μi = 1∑
j �=i

1
ψj

,
giving

ψi = 1∑
j �=i

1
ψj

+ρ.

Thus, each ψi equals 1
I−1 times the harmonic mean of other agents’ ψj , plus a constant. For I>2, the mapping from

(ψi)i=1,...,I to 1
I−1 times the profile of harmonic means (plus a constant) is a contraction; therefore, the above system of

equations has a unique solution, ψi =(I −1)ρ/(I −2). Substituting ψi in bid functions gives bids in terms of primitive
parameters. The resulting bid functions are in equilibrium, and the uniqueness of solution of the above system of equations
implies that this equilibrium is unique in the class of linear equilibria. ‖
Proof of Lemma 1 (Linearity of h(·)). (Only if) Suppose h(·) is linear on the support, and hence there exists h0,h1 ∈R

such that h(q)=h0 +h1q. Since h(·) is well-defined, g(·)>0 on the support, and hence G(·) is strictly increasing. Therefore,
there exists a unique q∗ ∈R such that G(q∗)= 1

2 . For any q in the support, g(q)= 1−G(q)
h0+h1q . The right-hand side is continuous

in the interior of the convex support as h0 +h1q>0, and thus the differential equation gives a unique solution G(·) on the
interior of the support, up to a constant. Thus, there can exist at most one G(·) for which h(q)=h0 +h1q and the median is
given by q∗. If h1 =0, the only solution is an exponential distribution; hence, it is within the class. For any h1 �=0, define
ξ≡h1, σ ≡ h0+h1q∗

2h1
, and α≡(h0 +h1q∗/2h1 −h0

)
/h1. Since h0 +h1q∗>0, we have σ >0. Therefore, parameters ξ,α∈R

and σ ∈R++ define a Generalized Pareto distribution. It is straightforward to verify that, with thus-defined parameters,
the inverse hazard rate of the Generalized Pareto distribution h0 +h1q and its median is q∗. By the uniqueness argument,
there can be at most one such distribution. Hence, the Generalized Pareto Distribution coincides with G(·).

29. To shorten the analysis, one could rely on the first-order condition derived by Wilson (1979) (see also Hortaçsu,
2002). We provide the slightly longer proof for completeness and because we think that the discretization-based approach
is more intuitive and elementary.
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(If) Given F(Q|v)=1−(1+ξ Q−α
σ I )−

1
ξ , the c.d.f. of per capita supply q=Q/I is G(q)=1−(1+ξ q−α

σ
)−

1
ξ . Thus,

h(q)=σ−αξ+ξq and, hence, h(·) is linear. ‖
Proof of Proposition 7 (Equilibrium in pay-as-bid auction). Consider bidder i in pay-as-bid auction, whose residual
supply has slope μi and intercept x with c.d.f. Gi(·) and the corresponding density gi(·). With a discrete x, agent i is
bidding against a countable family of residual supplies, and the best response is a step function.30 Therefore, in deriving
the best response for discrete x, we restrict attention to the class of step functions. Consider a local perturbation of a bid
to a new step function around (b,q), observed in state s. In state s, the perturbation increases the obtained quantity by
dq and the equilibrium price by dp=μidq and does not affect either of the two variables in any other state. With the
deviation increasing his/her quantity in state s, the marginal benefit is dq×π s ×(v−ρq). To find the cost of the deviation,
observe that in state s, the payment increases because additional units purchased at price b augment the payment by dq×b
and, in addition, more aggressive bidding raises the price by dp=μidq. Since the payment for all units up to q−	q is
determined by the upper part of the bid function, the increased price changes the payment for	q units. Consequently, the
price impact effect is given by	q×μidq. In addition, aggressive bidding inflicts a negative externality on the payments
in higher states. In all higher states, the payment increases by	q×μidq and	p×dq. The total marginal cost associated
with aggressive bidding amounts to dq×π s ×(b+μi	q)+dq×(	p+μi	q)×∑k>sπ

k . At the optimum, the marginal
benefit balances the marginal cost. Alternatively, the Euler equation equalizes the net marginal benefit in state s with the
negative externality inflicted on the payments in all higher (but not lower) states

π s

	x

	x

	q
×(v−ρq−b−μi	q)=

(
	p

	q
+μi

)
×
∑
k>s

π k . (A.7)

The Euler equation (A.7) gives a necessary optimality condition for a partition of the intercept into intervals of size
	x. Let 	x→0. The distribution Gi(·) is smooth, hence π s/	x=gi(x)+o(1). By the Maximum Theorem on compact
intervals, the best response converges uniformly to the unique linear best reply bi(·,v). Thus, the ratio	p/	q converges
to the slope of the best response,	p/	q=∂bi(·,v)/∂q+o(1), and the ratio	x/	q converges to the negative of the slope
of the affine function x(q) that maps the equilibrium quantities into the intercepts, which is the relation observed in a
linear equilibrium, 	x/	q=−∂x(·)/∂q+o(1). The minus sign reflects that the equilibrium relation x(q) has a negative
slope. Note that with an infinitely fine grid, the within-state price impact effect disappears as 	q→0 and μi	q=o(1).
Substituting the limits into (A.7), ignoring the o(1) elements, and observing that the probability of all higher states
coincides with Gi(·), gives the limit Euler equation

− ∂x(·)
∂q

[v−ρq−b]=
[
μi − ∂bi(·)

∂q

]
Gi(x)

gi(x)
. (A.8)

We re-cast the Euler equation in terms of the distribution of the equilibrium quantity q. In equilibrium, x(q) is an affine
decreasing transformation of q, the c.d.f. of q can be found as G(q)=1−Gi(x(q)) and the density of q as g(q)=−gi(x)×
∂x(·)/∂q. The inverse hazard rate of the equilibrium quantity is defined by h(q)≡ (1−G(q))/g(q). Thus, v−ρq−p=
h(q)[μi −∂bi(·)/∂q].31

Substituting in for h(q)=σ+ξq, this last condition can be rewritten as

v−ρq−b= (σ+ξq)(μi −ψi).

In a linear equilibrium, the slope of the bid function ψi ≡∂bi(·)/∂q is a constant. Solving for b, differentiating with
respect to q, and solving for the slope of the bid gives ψi =ξμi/(1−ξ)+ρ/(1−ξ). Since ρ>0 and ξ < I−1

I <1 we

conclude that ψi>0 and the bid functions are invertible, with the slope of inverse bids ψ−1
i = 1

ξμi/(1−ξ)+ρ/(1−ξ) . From

the market clearing condition, qi −p
∑

j �=iψ
−1
i −Q is a constant, and hence the price impact of bidder i can be expressed

as μi = 1∑
j �=iψ

−1
j

, giving

ψi =ξμi/(1−ξ)+ρ/(1−ξ)= ξ

1−ξ
1∑

j �=i
1
ψj

+constant.

30. As in the proof of Proposition 6, a shorter analysis would rely on the first-order condition derived by Wilson
(1979) (see also Hortaçsu, 2002). We provide the slightly longer proof for completeness and because we think that the
discretization-based approach is more intuitive and elementary.

31. In the derivation of the first-order condition, we assume that the considered q is in the support of the equilibrium
quantity. When density g(q) is equal to zero, inverse hazard rate is not well-defined, and the first-order condition does
not apply. If q is smaller than the quantities in the support, a bidder has an incentive to submit the smallest possible bid.
Aggressive bidding for such q brings no benefit of greater quantity, while it does increase the payments in higher states.
Given that submitted bids are required to be non-increasing, the optimal bid has flat parts. Note that the flat-bid parts do
not occur for the quantities to the right of the support. For such quantities, the submitted bids have an effect neither on the
equilibrium quantities nor on the payment in any of the possible states, and bidders are indifferent to what they submit.
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Thus, each ψi equals ξ
1−ξ

1
I−1 times the harmonic mean of other agents’ψj , plus a constant. Notice that for ξ <0 we have∣∣∣ ξ

1−ξ
1

I−1

∣∣∣<1; this bound remains true for ξ≥0 as long as ξ < I−1
I . We conclude that the mapping from (ψi)i=1,...,I to

ξ
1−ξ

1
I−1 times the profile of harmonic means (plus a constant) is a contraction; therefore, the above system of equations

has a unique solution, ψi = (I−1)ρ
I(1−ξ )−1 . The resulting bid functions are in equilibrium, and the uniqueness of solution of the

above system of equations implies that this equilibrium is unique in the class of linear equilibria. ‖
Proof of Theorem 3 (Expected revenue ranking). Given the equilibrium bids, revenue per capita in the three auction
formats are

RU = vq− I −1

I −2
ρq2, (A.9)

RD =
(

v− Iρσ

I −1−Iξ

)
q− 1

2

(I −1)ρ

I (1−ξ) q2, (A.10)

RV = vq− 2I −1

2I −2
ρq2, (A.11)

where q=Q/I . The total surplus per capita is given by

TS =vq− 1

2
ρq2. (A.12)

The first two moments of q with the Generalized Pareto distribution with α=0, σ >0 and ξ <1/2 are given by E(q)= σ
1−ξ

and E(q2)= 2σ 2

(1−ξ )(1−2ξ ) . The interim expected revenues are

E(RU |v) = σ

1−ξ
[

v− I −1

I −2

2ρσ

(1−2ξ )

]
, (A.13)

E(RD|v) = σ

1−ξ
[

v− Iρσ

I −1−Iξ
− I −1

I −1−Iξ

ρσ

(1−2ξ )

]
, (A.14)

E(RV |v) = σ

1−ξ
[

v− 2I −1

I −1

ρσ

(1−2ξ )

]
. (A.15)

For all I>2, ρ>0, and ξ <0, strict inequalities TS>E(RD|v)>E(RV |v)>E(RU |v) hold, as required.32 ‖
Proof of Proposition 8 (Ex post revenue ranking). For any realization of Q and v, the per-capita total surplus and the
seller’s revenues in the Vickrey auction and the uniform-price auction are given by (A.9), (A.11), and (A.12), respectively.
The revenue rankings follow. ‖
Proof of Proposition 9 (SOSD). In light of Proposition 8 and the discussion preceding Proposition 9, it is enough to
prove that in the limit as I →∞ and q=Q/I stays constant, the expected seller’s pay-off is higher in the uniform-
price auction than in the pay-as-bid auction. Let us fix v and notice that for any realization of q, the revenue in the
competitive limit of uniform-price and Vickrey auctions is given by RU =RV =vq−ρq2, whereas in a pay-as-bid auction,

it is RD =
(

v− ρσ
1−ξ
)

q− 1
2

ρ
1−ξ q2. Crucially, our non-satiation assumption implies that both RU =RV and RD are strictly

increasing in q that belongs to the support of Q/I .
As the difference RU (q)−RD(q)= ρσ

1−ξ q− 1−2ξ
2−2ξ ρq2 is quadratic in q and RU (0)=RD(0)=0, there is at most one

q∗>0 in the support of both random variables, for which R∗ ≡RU (q∗)=RD(q∗). Since the revenues are equal in
expectation over q, threshold q∗ exists and belongs to the interior of the support of per capita supply. Because the
revenue function in the uniform-price and the Vickrey auction is steeper at q=0 than that of the pay-as-bid auction, we
conclude that RU (q)>RD(q) for q∈(0,q∗) and RU (q)<RD(q) for q>q∗. Thus, with fixed v, in the interval (0,R∗), the
c.d.f. of the pay-as-bid auction revenue is strictly higher than that of the uniform-price auction, and for all R>R∗, the
c.d.f. of the uniform-price auction revenue is greater than that of the pay-as-bid auction. Since the expected revenues are
equal, this single-crossing of the two c.d.f.’s at R∗ is sufficient for the uniform-price auction revenue to stochastically
dominate the pay-as-bid auction in the second-order sense. Continuity of revenues gives the assertion. ‖

Acknowledgments. This article combines the results from “Demand Reduction and Inefficiency in Multi-Unit
Auctions” by L. M. Ausubel and P. Cramton and “Design of Divisible Good Markets” by M. Pycia, M. Rostek and

32. While our non-satiation assumption implies that F has bounded support, and hence ξ <0, note that if ξ ∈ (0,1/2)
then our characterization of equilibria remains true, and TS>E(RV |v)>E(RD|v)>E(RU |v) for all v.
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