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13 Neighborhood Effects

In his seminal 1987 book, The Truly Disadvantaged, William Julius Wilson attempted
to explain the growth of an inner-city “underclass” and its attendant “social disloca-
tions” such as joblessness, crime, and out-of-wedlock births. One important aspect
of Wilson’s argument was his emphasis on interpersonal influence. For instance,
he argued that middle-class “role models” help to encourage labor-force participa-
tion within neighborhoods. Conversely, he suggested that joblessness becomes more
socially acceptable in neighborhoods where unemployment is widespread. Follow-
ing Wilson’s lead, many social scientists have subsequently attempted to assess the
importance of these “neighborhood effects.”

Beyond emphasizing interpersonal influence, Wilson also identified two macro-
structural changes contributing to the rise in joblessness. First, high-paying man-
ufacturing jobs became increasingly scarce, as many employers moved production
from the city to the suburbs (or outside the US altogether). Second, given the de-
cline in barriers to residential mobility, many middle-class blacks also left the city for
the suburbs. Crucially, the impact of these macro-structural changes may be com-
pounded by neighborhood effects. Any rise in unemployment increases the social
acceptablility of joblessness, leading to further unemployment. This vicious cycle
might potentially account for the sudden, dramatic rise in joblessness observed in
some inner-city neighborhoods.

Wilson’s argument suggests a threshold model in which the actual neighborhood
employment rate depends upon the expected neighbhorhood employment rate. In the
present chapter, we formally develop a simple threshold model, and then analyze the
effect of the two macro-structural changes identified by Wilson. Beyond providing an
interesting application of threshold models, this chapter also introduces the notion
of a catastrophe in a dynamical system.

13.1 The model

Following the structure of threshold models introduced in the previous chapter, we
assume that each individual i faces a binary choice. Here, the “participation” decision
involves the choice between employment and non-employment. Adopting terminol-
ogy from economics, each of these options is associated with some level of “utility”
(i.e., satisfaction) for the individual. More precisely, we’ll assume that the utility of
employment for individual i is given by

UE(i) = w(i)
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where w(i) denotes the wage on the highest-paying job available to individual i. The
utility of non-employment for individual i is given by

UN = (1− x)b

where x is the expected neighborhood employment rate (hence 1− x is the expected
unemployment rate) and b might be interpreted as the value of an unemployment
benefit.

This specification of utility warrants several comments. First, while UE(i) de-
pends solely on the monetary value of individual i’s wage, UN captures “social” as
well as monetary considerations. Following Wilson’s argument, joblessness becomes
less socially acceptable as the neighborhood employment rate rises. Alternatively, we
might say that greater “stigma” is attached to joblessness in neighbhorhoods where
the employment rate is higher. Quantitatively, given our specification of UN , we see
that UN = b when x = 0, while UN = 0 when x = 1. Second, having already inter-
preted the parameter b as an unemployment benefit, other interpretations are also
possible. For instance, economists might interpret this parameter as the individual’s
non-monetary “value of leisure.” Alternatively, recasting non-employment as “crim-
inal activity,” we might view b as the monetary benefits of crime. Presumably, just
as the stigma associated with joblessness falls as the unemployment rate rises, the
stigma associated with criminal activity falls as the proportion of criminals in the
neighbhorhood rises. Finally, while we have allowed UE(i) to vary across individuals,
note we have assumed (merely for simplicity) that UN is the same for all individuals.

Given this specification of utility, individual i chooses employment if and only if

UE(i) ≥ UN

which implies
w(i) ≥ (1− x)b

or, equivalently,
x ≥ 1− (w(i)/b).

The expression on the right-hand side of this last inequality can be interpreted as
individual i’s threshold level, since i chooses employment if and only if the expected
employment rate x exceeds this level. Thus, in contrast to the preceding chapter
where thresholds were simply taken as given, the present model derives each indi-
vidual’s threshold level from his wage level. Note that individuals with high wages
will have low thresholds (choosing to work even if the expected employment rate is
low), while individuals with low wages will have high thresholds (choosing not to
work unless the expected employment rate is very high).

Moving to the neighbhorhood level, we now assume a wage distribution (where
the “wage” is again the highest-paying job available to each individual) with proba-
bility density function f(w) and cumulative distribution function F (w).1 As we have

1To emphasize: in contrast to the preceding chapter, we are specifying the wage distribution
rather than threshold distribution.
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already seen, those individuals in the lower tail of the wage distribution (with wages
w < (1−x)b) will choose non-employment, while those in the upper tail of this distri-
bution (with wages w ≥ (1− x)b) will choose employment. Consequently, given the
expected employment rate x, the actual unemployment rate is F ((1− x)b), and the
actual employment rate is 1−F ((1− x)b). Further assuming adaptive expectations,
the dynamics of the model are thus determined by the equation

xt+1 = 1− F ((1− xt)b)

where xt denotes the neighborhood employment rate in period t.
To illustrate, suppose that wages are normally distributed.2 As we saw in Chapter

12, the cdf for the normal distribution is given by

F (w) = (1/2)

(
1 + erf

(
w − µ

σ
√

2

))
where µ is the mean of the distribution and σ is the standard deviation. Choosing
the parameters b, µ, and σ, we can plot the threshold curve to determine the fixed
points and their stability. For instance, given b = 100, µ = 70, and σ = 30, we
obtain the threshold diagram below.

>> s = ’1 - (1/2)*(1+erf(((1-x)*100-70)/(30*sqrt(2))))’; % generator function as a string
>> hold on; ezplot(s,[0,1,0,1]); plot(0:1,0:1); hold off
>> % threshold diagram
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2Because the normal density function f(w) is positive for all w ∈ (−∞,∞), some individuals
will have negative wages. Following our interpretation of negative thresholds in Chapter 12, we
can interpret these individuals as those who will never choose to work, regardless of the expected
employment rate.
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Given these parameter values, we thus find a unique stable equilibrium in which the
neighborhood employment rate is close to 1. This result might be surprising given
that most individuals have wages below the value of the unemployment benefit b.
More precisely, because F(1) = .8413, we know that only 15.87% of the individuals
in the neighborhood have wages exceeding b = 100. However, the employment of
these individuals reduces the utility of non-employment for others, setting in motion
a virtuous cycle. More precisely, if we assume the initial condition x0, we obtain the
time path below.

>> x = 0; y = x;
>> for t = 1:10; x = 1 - (1/2)*(1+erf(((1-x)*100-70)/(30*sqrt(2)))); y = [y; x]; end
>> y

y =
0

0.1587
0.3188
0.5249
0.7733
0.9427
0.9839
0.9887
0.9892
0.9892
0.9892

Thus, given 15.87% who would always work (for any x ∈ [0, 1]), another 16.01% are
induced to work, bringing the total to 31.88%. In turn, this induces another 20.61%
to work, bringing the total to 52.49%. And so on, until almost everyone in the
neighborhood is working. Note that this time path could also be viewed graphically
as a cobweb on the threshold diagram.

13.2 Worsening of the wage distribution

Given this model, we can now address the impact of the macro-structural forces
identified by Wilson. We’ll begin by analyzing how the loss of “good jobs” might
affect the equilibrium employment rate. To model this change in a very simple
manner, we’ll continue to assume that wages are normally distributed, and that
the mean µ falls over time (while the standard deviation σ remains constant). For
instance, if µ falls from 70 to 50 to 30, we obtain the three threshold curves shown
on the diagram below.

>> s70 = ’1 - (1/2)*(1+erf(((1-x)*100-70)/(30*sqrt(2))))’;
>> s50 = ’1 - (1/2)*(1+erf(((1-x)*100-50)/(30*sqrt(2))))’;
>> s30 = ’1 - (1/2)*(1+erf(((1-x)*100-30)/(30*sqrt(2))))’;
>> hold on; ezplot(s70, [0,1,0,1]); ezplot(s50, [0,1,0,1]); ezplot(s30, [0,1,0,1]);
plot(0:1,0:1); hold off
>> % threshold curves for mu = 70, 50, 30
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Graphically, a decrease in the mean of the wage distribution results in a downward
shift of the threshold curve. Crucially, this downward shift is accompanied by a
qualitative change in the number and location of fixed points. We’ve already seen
that, when the mean wage µ = 70, there is a unique, stable equilibrium at a high
employment rate (x∗ = 0.9892). If the mean wage drops to µ = 50, there is now
a stable upper equilibrium (which you can show is x∗ = 0.9185), a stable lower
equilibrium (x∗ = 0.0815), and an intermediate unstable equilibrium (x∗ = 0.5). If
the mean wage drops further to µ = 30, there is a unique, stable equilibrium at a
low employment rate (x∗ = 0.0108).

Given the preceding diagram, we can now envision the following scenerio. Sup-
pose that the mean wage is initially µ = 70, and that the neighborhood employment
rate is in equilibrium. Further suppose that the mean of the wage distribution be-
gins slowly to fall. Here, “slowly” indicates that the change in the wage distribution
occurs much more gradually then the short-run dynamics captured by the generator
function. Consequently, the employment rate quickly adjusts to the change in the
wage distribution, always remaining close to the equilibrium determined by the in-
tersection of the threshold curve and 45-degree line. More precisely, as µ falls slowly
from 70 to 50, the employment rate also falls slowly from 98.92% to 91.85%. Thus,
the gradual worsening of the wage distribution initially results in a small, gradual
worsening of the equilibrium employment rate.
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However, we can see from the diagram that further worsening of the wage dis-
tribution will eventually have more dramatic consequences. As the threshold curve
continues to shift downwards, there is some value of µ for which the upper equi-
librium ceases to exists. Once µ reaches this value, there is a unique equilibrium
at a low employment rate, and the short-run dynamics will cause the employment
rate to fall rapidly. This scenario might well be regarded as a “catastrophe” from
a public-policy perspective. However, this term is also employed by mathematicans
in the analysis of dynamical systems. In that context, a catastrophe occurs when a
small (continuous) change in a parameter value causes a large (discontinuous) jump
in the equilibrium.

To better visualize the catastophe in the current model, consider the diagram
below, which shows the fixed point(s) x∗ for each value of the parameter µ.

>> s = [ ]; srow = [ ];
for x = 0:.05:1;

for mu = 0:5:100;
fx = 1 - (1/2)*(1+erf(((1-x)*100-mu)/(30*sqrt(2)))) - x;
srow = [srow, fx];

end;
s = [s; srow];
srow = [ ];

end
>> contour(0:5:100,0:.05:1,s,[0 0]) % catastrophe diagram
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Given µ = 70, the unique equilibrium x∗ = 0.9892 lies on the upper “arm” of this
curve. As µ begins to fall, the equilibrium moves along this arm, reaching x∗ = 0.9185
when µ = 50. But from the diagram, we can see that further decreases in the mean
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wage will cause more rapid declines in employment rate, and that a catastrophe will
occur when µ ≈ 45. Once the mean wage has fallen below this critical level, the
neighborhood employment rate plunges from approximately 80% to 5%. Further
declines in µ would have only small effects on x∗, as the equilibrium moves along the
lower arm of the curve.

Interestingly, if we suppose that neighborhood is initially in equilibrium at a low
employment rate, and assume a gradual improvement in the mean wage, the time
series of employment rates is not quite the reverse of the preceding scenario. In this
alternative scenario, the equilibrium slows moves upwards along the lower arm of
the curve, until the mean wage reaches µ ≈ 55. Once the mean wage rises about
this critical level, the employment rate jumps quickly from approximately 20% to
95%.3 From a public-policy perspective, this suggest the importance of preventative
action in the face of a worsening wage distribution. Once the catastrophe has al-
ready occurred, even larger policy initiatives may be necessary to induce a “positive
catastrophe.”

Having offered a conceptual discussion of the catastrophe diagram, let’s now
consider its computation. Fixing the parameters µ and σ, the fixed point(s) x∗ are
the solutions of the equation

1− F ((1− x)100)− x = 0.

That is, we need to “find the zeros” of the function on the left-hand side of this
equation. We have assumed that F (w) is the cdf for the normal distribution with
mean µ and standard deviation σ. To make our notation more explicit, we can write
F (w) as F (w, µ, σ). Allowing µ to be set arbitrarily while fixing σ = 30, we are thus
attempting to find the pairs {µ, x} such that

s(µ, x) = 1− F ((1− x)100, µ, 30)− x = 0.

Approaching this problem graphically, s(µ, x) can be viewed as a three-dimensional
surface. To give a two-dimensional representation of this surface, we might plot the
contour lines corresponding to different values of the function s(µ, x). However, for
present purposes, we are concerned solely with the single contour line corresponding
to s(µ, x) = 0.4 To use the contour function in Matlab, we first need to compute

3Here, there is a divergence between public-policy and dynamical systems terminology. The
upward jump in the employment rate would seem desirable – hardly a “catastophe” – from a
public-policy perspective, but remains a catastrophe from a dynamical systems perspective.

4In economics, contour plots are often used to represent a utility or production function with two
inputs. In that context, the contour lines for utility functions are called “indifference curves,” while
the contour lines for production functions are called “isoquants.” Readers unfamiliar with contour
plots might consider the analogy to topographic maps, which indicate the shape of a mountain
range (a three-dimensional surface) using elevation lines (contour lines). For present purposes, we
are concerned solely with the particular elevation line denoting “sea level” (the contour line for
which s = 0).
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s(µ, x) numerically, finding the value of s for each point {µ, x} on a grid.5 The
resulting s matrix (along with the grid coordinates) can then be entered into the
contour function to obtain a contour plot. The final input to this function [0 0]

indicates that we want to plot only the single contour line corresponding to s = 0.

13.3 Outmigration of high-wage individuals

In addition to the worsening of the wage distribution, Wilson identified the exodus
of the black middle-class as a second factor contributing to the rise in inner-city
joblessness. The loss of employed individuals from a neighborhood will obviously
have a direct effect on the neighborhood employment rate. But as we saw in the
Chapter 12.4, the removal of individuals from a group can also have a large indirect
effect, causing some of those who remain behind to change their behavior.

To proceed formally, suppose that the outmigration of the middle-class can be
viewed as a truncation of the wage distribution. That is, all individuals with wages
greater than some level z are removed from the population. Renormalizing the
old wage distribution F (w) to account for this truncation, we obtain the new wage
distribution

G(w, z) =

{
F (w)/F (z) for all w ≤ z
1 for all w > z

which can be restated as

G(w, z) = min{F (w)/F (z), 1}.

Fixed points are now determined by the equation

1−G((1− x)b, z) = x

or equivalently
1−min{F ((1− x)b)/F (z), 1} = x.

Our goal in this section is to understand how the truncation level z will affect these
fixed points and their stability.

To develop numerical examples, we’ll again assume that F (w) is the cdf for the
normal distribution, and further fix µ = 70 and σ = 30 and b = 100. Given the
truncation level z, we can now plot the threshold curve to determine the fixed points
and their stability. The diagram below shows four threshold curves corresponding to
four different values of z.

>> s150 = ’1 -
min(.5*(1 + erf(((1-x)*100-70)/(30*sqrt(2)))) / (.5*(1 + erf((150-70)/(30*sqrt(2))))),1)’;

5The precise grid is somewhat arbitrary. I computed s(µ, x) for all µ ∈ {0, 5, 10, . . . , 100} and all
x ∈ {0, 0.05, 0.1, . . . , 1.0}, so that s is a 21× 21 matrix. To generate the contour diagram, Matlab
interpolates between these points. Thus, finer grids result in more accurate contour plots.
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>> s100 = ’1 -
min(.5*(1 + erf(((1-x)*100-70)/(30*sqrt(2)))) / (.5*(1 + erf((100-70)/(30*sqrt(2))))),1)’;
>> s70 = ’1 -
min(.5*(1 + erf(((1-x)*100-70)/(30*sqrt(2)))) / (.5*(1 + erf((70-70)/(30*sqrt(2))))),1)’;
>> s40 = ’1 -
min(.5*(1 + erf(((1-x)*100-70)/(30*sqrt(2)))) / (.5*(1 + erf((40-70)/(30*sqrt(2))))),1)’;
>> hold on; ezplot(s150,[0,1,0,1]); ezplot(s100,[0,1,0,1]); ezplot(s70,[0,1,0,1]);
ezplot(s40,[0,1,0,1]); plot(0:1,0:1); hold off
>> % threshold diagrams for z = 150, 100, 70, 40
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Having assumed µ = 70 and σ = 30, few individuals have wages above 150. Thus,
the threshold curve for z = 150 is very similar to the initial threshold curve shown
in section 13.1 (which implicitly assumes z = ∞). However, as z falls, the threshold
curve shifts downward, altering the number and location of the fixed points. Qual-
itatively, the consequences are quite similar to those induced by the decline in the
mean wage µ. For z greater than 100, there is a unique stable equilibrium at a high
employment rate. But for z = 70, there is a stable upper equilibrium, a stable lower
equilibrium at x∗ = 0, and an unstable intermediate equilibrium. For even lower
truncation values such as z = 40, the only equililbrium is x∗ = 0.

From this diagram, it is apparent that outmigration of high-wage individuals
could also have catastropic consequences. Suppose that, due to gradual reduction in
both legal and informal barriers to residential mobility, the truncation level z falls
slowly over time. Initial decreases in z (from 150 to 100 to 70) would induce only

9



small decreases in the equilibrium employment rate. But once z falls past a critical
point, the upper stable equilibrium no longer exists, and the employment rate would
fall dramatically. From the diagram below, we see that the catastrophe occurs when
z ≈ 50, causing the employment rate to fall from x∗ ≈ 0.9 to x∗ = 0.

>> s = []; srow = [];
for x = 0:.05:1;

for z = 0:5:150;
fx = 1 - min((1/2)*(1+erf(((1-x)*100-70)/(30*sqrt(2))))

/ (1/2)*(1+erf((z-70)/(30*sqrt(2))))),1) - x;
srow = [srow, fx];

end;
s = [s; srow];
srow = [];

end
>> contour(0:5:150,0:.05:1,s,[0 0]) % catastrophe diagram
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Conceptually, the two macro-structural forces identified by Wilson – the loss
of high-paying jobs and the outmigration of high-wage workers – might seem rather
different. But our formal analysis suggests that these forces are actually quite similar.
To clarify the nature of this similarity, we may once again employ the concept of
stochastic dominance defined in Chapter 12. Given a decrease in the mean wage µ,
the old wage distribution stochastically dominates the new distribution. Formally,
µ ≥ µ′ implies

F (w, µ, σ) ≤ F (w, µ′, σ)

for any w and σ. Similarly, given a decrease in the truncation level z, the old wage
distribution stochastically dominates the new distribution. Formally, z ≥ z′ implies

G(w, z) ≤ G(w, z′)
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for any w. To illustrate, consider the cumulative wage distributions plotted below.

>> F70 = ’.5*(1 + erf((w-70)/(30*sqrt(2))))’;
>> F50 = ’.5*(1 + erf((w-50)/(30*sqrt(2))))’;
>> hold on; ezplot(F70,[0,150,0,1]); ezplot(F50, [0,150,0,1]); hold off
>> % cumulative wage distribution for mu = 70, 50
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>> Fz70 = ’min(.5*(1 + erf((w-70)/(30*sqrt(2)))) / (.5*(1 + erf((70-70)/(30*sqrt(2))))),1)’;
>> hold on; ezplot(F70,[0,150,0,1]); ezplot(Fz70, [0,150,0,1]); hold off
>> % cumulative wage distribution for z = inf, 70
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Thus, we see that the cumulative wage function shifts upwards as the mean wage
falls from µ = 70 to µ = 50, and also as the truncation level falls from z = ∞ to
z = 70. Consequently, a decrease in either parameter has similar quantitive effects.
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13.4 Further reading

This chapter draws on two unpublished working papers (Montgomery 1989, 1990)
that I wrote after first reading The Truly Disadvantaged. Wilson developed his ar-
guments further in other books including... Something on empirical developments....
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