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14 The Dynamics of Balance Theory

In some types of social networks, the links between actors can be either positive or
negative. Depending on the context, positive links might reflect friendship or alliance;
negative links might reflect enmity or hostility. Balance theory attempts to explain
the structure of these networks. After briefly reviewing some core ideas of balance
theory, we develop a simple model of the adjustment process by which links might
change sign (from positive to negative or vice versa). The model is technically an
absorbing Markov chain with 2N states (where N is the number of links). However,
as we verify through simulation analysis, the behavior of this Markov chain is well
approximated by a simple one-dimensional nonlinear model. Interestingly, given the
myopic adjustment process we consider, the equilibrium of the nonlinear model may
differ from the long-run outcome (“balance”) presumed by the theory.

14.1 Balance theory

In his seminal contribution to balance theory, Heider (1946) focused on a simple social
network with three actors (i.e., a triad) in which each pair of actors is connected by
either a positive or negative link. Graphically, we may use solid lines to denote
positive links, and dotted lines to denote negative links. Ignoring the identities of
the actors, there are four possible types of triads, shown below.
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Note that the index for each triad simply indicates the number of negative links.
Heider argued that, from a social-psychological perspective, triads of type 0 or 2 are
stable (“balanced”) while triads of type 1 or 3 are not. Essentially, type-1 triads
are imbalanced because they violate the principle that “a friend of my friend is my
friend.” If the network started as a type-1 triad, balance might be achieved either
by making the negative link positive (so that the network becomes a type-0 triad) or
by making one of the positive links negative (so that the network becomes a type-2
triad). Essentially, type-3 triads are imbalanced because they violate the principle
that “an enemy of my enemy is my friend.” If the network started as a type-3 triad,
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we might thus anticipate that one of the negative links will become positive, so that
the network is transformed into a type-2 triad. In contrast, because triads of type 0
and 2 satisfy both of these principles, we have no reason to expect any change in the
sign of the links. Given enough time for social-psychological forces to “play out,” we
might thus expect to observe only balanced triads (type 0 or 2) in the long run.1

In another seminal paper, Cartwright and Harary (1956) formalized Heider’s
intuition, and extended the concept of balance to larger networks. Interestingly,
their concept of balance can be stated in two equivalent ways. The first requires
some terminology from graph theory. A cycle is a sequence of links that begins and
ends at the same node. For a signed graph (i.e., a network in which links are either
positive or negative), the sign of a cycle is given by the product of the signs of the
links that comprise the cycle. To illustrate, consider again the 4 types of triads.
From the diagram above, it is apparent that type-0 triads contain a positive cycle
(schematically, + ·+ ·+ = +), type-1 triads contain a negative cycle (+ ·+ ·− = −),
type-2 triads contain a positive cycle (+ · − · − = +), and type-3 triads contain a
negative cycle (− · − · − = −). This suggests that the balance of a signed graph
depends on the signs of its cycles. More precisely, following the definition developed
by Cartwright and Harary, a signed graph is balanced if and only if every cycle
is positive. Importantly, this definition allows us to move beyond triads, assessing
balance for social networks with any number of actors.2

Balance can also be assessed in a second way. Again following Cartwright and
Harary (1956), a signed graph is balanced if and only if the nodes can be partitioned
into two subsets (one possibly empty), with any positive links connecting nodes
within subsets, and any negative links connecting nodes between subsets. Intuitively,
the network is balanced when the actors can be separated into (no more than) two
“camps” in such a way that any friends belong to the same camp and any enemies
belong to different camps. Returning to our 4 types of triads, note that this partition
is possible for triads of type 0 (where all actors belong to the same camp) and type
2 (where 2 actors belong to one camp and the remaining actor belongs to the other
camp). However, this partition is not possible for triads of type 1 or 3.3 Like the
“cycle” criterion discussed above, the “partition” criterion can also be used to assess
balance in networks with any number of actors.4

1Against Heider (1946), some researchers (notably Davis 1967) have argued that type-3 triads
are not inherently unstable. This leads to a variation on balance called “clusterability.” For the
present chapter, we focus on Heider’s original conception of balance.

2For a signed graph with many nodes, some cycles may be quite long. This makes it difficult
to assess balance merely by inspecting the graph. However, researchers have developed algebraic
procedures for assessing balance (see Harary et al 1965, Batagelj 1994, Montgomery 2009).

3For the type-1 triad, suppose we label the actors {A,B,C} so that there is a positive link from
A to B, a positive link from B to C, and a negative link from A to C. By virtue of the positive
links, both A and C should be placed in B’s camp. But the negative link from A to C makes this
impossible. For the type-3 triad, we can eliminate negative links within camps only if there are 3
different camps. But balance permits at most 2 camps.

4While the equivalence of the cycle and partition criteria may not be immediately obvious, this is
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Cartwright and Harary (1956) did not presume that the network is complete (i.e.,
that every pair of actors is connected by either a positive or negative link). However,
if we restrict attention to complete networks, the balance criterion may be stated
in yet another way. A complete network with n actors has n(n − 1)/2 links and
n(n− 1)(n− 2)/6 triads. As first noted by Flament (1963), a complete signed graph
is balanced if and only if every triad is balanced. To assess balance using this “triad”
criterion, we can conduct a triad census, counting the number of triads of each of
the 4 possible types. The network is balanced if and only if every triad is of type
0 or 2 (and hence no triads are of type 1 or 3). Moreover, a simple measure of the
“degree” of balance is given by the proportion of triads that are balanced.

14.2 A process model

Given that background, we might view “balance” as a conjecture about the structure
of the network in the long run. However, without a specification of the process by
which links are altered, it is unclear whether this outcome will actually be reached.
While researchers have proposed a variety of adjustment mechanisms, this section
considers a very simple “myopic” specification from Antal et al (2006).

For simplicity, we assume a complete network, so that each pair of actors is
connected by either a positive or negative link. Each period, we randomly select one
triad. If this triad is balanced (type 0 or 2), no links are altered. If the triad is type
3, then one of the negative links (chosen at random) becomes positive. If the triad is
type 1, then the negative link becomes positive with probability p. Otherwise (with
probability 1 − p), one of the positive links (chosen at random) becomes negative.
Our adjustment process is thus summarized by the following diagram.
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Note that, in the special case where p = 1/3, we simply “flip” the sign of a ran-
dom edge whenever an unbalanced triad is selected. While this adjustment process
ensures balance of the focal triad, the process is “myopic” because any sign change
could induce imbalance in other triads. After modifying the focal triad (if it was
imbalanced), we begin the next period by randomly selecting a new focal triad. This

the content of the Structure Theorem proven by Cartwright and Harary (1956). Interested readers
might see the original paper or Chartrand (1977) for a proof.
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adjustment process is repeated indefinitely (unless balance is achieved, in which case
no further adjustments occur).

Formally, this process constitutes a Markov chain. The states of the chain are
the possible configurations of the network. Thus, given n actors, there are 2n(n−1)/2

possible states of the chain. If the number of actors is very small (say n = 3 or
4), we could analyze this model using the (transition matrix) method developed in
Chapter 4. Given larger n, this approach is clearly impractical. However, based on
our knowledge of Markov chains, we can still say something qualitative about the
long-run behavior of this chain. From the description of the adjustment process, it
is apparent that balanced states (in which all triads are positive) are absorbing, that
imbalanced states (in which some triads are negative) are transitory, and that every
imbalanced state can reach (directly or indirectly) a balanced state. Thus, we know
that the chain will eventually be absorbed if the process continues indefinitely.

While that conclusion is correct, it is also potentially misleading. Simulations
reveal that, when n is large and p < 1/2, balance is unlikely to occur within any
“empirically relevant” time frame.5 Rather, over the course of a (very long) sim-
ulation run, the system appears to converge to a (stochastic) steady state with a
constant proportion of positive links, and a degree of balance below 1. To illustrate,
we use the m-file balancedynamics placed in Appendix xx.

>> help balancedynamics

[d, y] = balancedynamics(p, x0, n, T)
balance theory simulation model based on Antal et al (2006)
input p = probability that type-1 triad becomes type-0 triad
input x0 = probability that each link is initially positive
input n = number of actors
input T = number of iterations
output d is a T x 4 matrix giving triad census [d0 d1 d2 d3] for each period
output y is a vector of length T giving number of positive links for each period

This program begins by constructing a random graph with n nodes (and hence
n(n−1)/2 links) in which each link is positive with probability x0 (and hence negative
with probability x0). It then implements (for T iterations) the adjustment process
described above so that a type-1 triad becomes a type-0 triad with probability p
(and hence becomes a type-2 triad with probability 1− p). The function outputs a
(T × 4) matrix d giving the triad census for each period, and a (length T ) vector y
giving the number of positive links in each period.

Setting the parameters p = 1/3, x0 = .99, n = 100, and T = 50000, the results of
one trial are shown on the next page.6 For these parameters, the total number of links

5See Antal et al (2006) for some formal analysis of the relationship between network size and
expected time to absorption.

6On my desktop computer, this run took about 10 minutes. The long computation time is due
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>> [d, y] = balancedynamics(1/3, .99, 100, 50000);
>> plot(y) % number of positive links over simulation run
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>> plot(d) % triad census over simulation run
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is n(n− 1)/2 = 4950, and the total number of triads is n(n− 1)(n− 2)/6 = 161700.
Thus, from the top diagram, we see that the share of positive links falls from its
initial value (approximately x0 = 0.95) to a “steady state” share of approximately
x∗ = 1/2. From the bottom diagram, we see that the shares of type-1 and type-2
triads converge to approximately 3/8, while the shares of type-0 and type-3 triads
converge to approximately 1/8.7

Further simulation runs produce quite similar results. (Readers are encouraged to
use the m-file to verify this claim for themselves. In particular, you should vary x0 to
demonstrate that the same imbalanced equilibrium arises for any initial condition.)
Thus, for our current parameter values (p = 1/3 and n large), simulation analysis
suggests that the degree of balance (i.e., the sum of the shares of type-0 and type-2
triads) does not approach 1, but instead converges to 1/2. Of course, if we allowed
this simulation to continue forever, we know that the chain will eventually reach a
balanced (absorbing) state. But based on even longer simulation runs (and analytical
results from Antal et al 2006), it is apparent that the system will “hover around” an
imbalanced equilibrium for any “empirically relevant” time frame.

14.3 A deterministic approximation

The smooth time paths shown in the preceding diagrams might suggest the possibility
of approximating the (very high-dimensional) Markov chain process with a (hopefully
low-dimensional) nonlinear system. In fact, Antal et al (2006) have shown that
the behavior of the process is well approximated by a one-dimensional nonlinear
system. To begin developing this model, let xt denote the proportion of links that
are positive in period t. Assuming that process begins with a random graph (so that
the probability of a positive realization is independent across links), we can obtain
a good approximation of the triad census by viewing each triad as a sample of 3
links. Following Antal et al (2006), we may say that the elements of the triad census
are initially “uncorrelated.” Interestingly, some formal analysis in Antal et al (2006)
reveals that, if the elements of the triad census are initially uncorrelated, then they
remain uncorrelated indefinitely. Consequently, for any period, the triad census is
well approximated by the equations

dt(0) = xt
3

dt(1) = 3xt
2(1− xt)

primarily to recomputation of the triad census at every iteration. Computation time rises linearly
in T and exponentially in n.

7The share of positive links (top diagram) can be derived from the triad census (bottom diagram)
using the equation

x =
3d(0) + 2d(1) + d(2)

n− 2
where d(i) indicates the number of triads of type i. Intuitively, each type-i triad contains 3 − i
positive links, and each link appears in n− 2 triads.
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dt(2) = 3xt(1− xt)
2

dt(3) = (1− xt)
3

where dt(i) denotes the proportion of triads of type i in period t. Intuitively, viewing
a triad as a sample of 3 links, we obtain a type-i triad when 3− i positive links and
i negative links are drawn.

Because each element of the triad census depends solely on the proportion of
positive links (x), we merely need to account for the dynamics of this one state
variable. To develop an equation, consider one iteration of the process model. If a
type-1 triad is selected (this occurs with probability d(1)) then the number of positive
links rises by 1 with probability p and falls by 1 with probability 1 − p. If a type-3
triad is selected (this occurs with probability d(3)) then the number of positive links
rises by one. Thus, the expected change in the number of positive links is given by

d(1)[p− (1− p)] + d(3)

= 3x2(1− x)(2p− 1) + (1− x)3

Because x denotes the proportion (not number) of links that are positive, we need
to divide this expression by the number of links in order to obtain the change in x.
Doing so, we obtain our one-dimensional system

∆x =
1

n(n− 1)/2

[
3x2(1− x)(2p− 1) + (1− x)3

]
with parameters p and n.

As a first “test” of this approximation, we compute the predicted time paths for
our preceding example, which are shown on the next page. Further examples confirm
that there is a good match between simulation results and this one-dimensional
model. (Readers are encouraged to compare simulation results to the deterministic
predictions for different values of the parameter p and the initial condition x0. You
might also experiment with different values of n, though computation time increases
exponentially in that parameter.)

Returning to the equation above, it is apparent that ∆x is always positive when
p > 1/2 and x 6= 1. That is, when type-1 triads are more likely to be transformed
into type-0 triads than type-2 triads, the proportion of positive links will continue
to rise until all links are positive. Thus, given p > 1/2, we find that the network
does become balanced (within an “empirically relevant” time frame). In contrast,
for p < 1/2, we see that ∆x = 0 implies x = 1 or

3x2(2p− 1) + (1− x)2 = 0

Solving this quadratic equation, we obtain

x =
2±

√
4− 4(6p− 2)

2(6p− 2)
=

1±
√

δ

1− δ
=

1

1±
√

δ
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>> x = .99; p = 1/3; n = 100; L = n*(n-1)/2; y = x;
for t = 1:50000; dx = (3*x^2*(1-x)*(2*p-1) + (1-x)^3)/L; x = x+dx; y = [y; x]; end
>> plot(y) % time path for proportion of positive links
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>> plot([y.^3, 3 * y.^2 .* (1-y), 3 * y .* (1-y).^2, (1-y).^3])
>> % time paths of triad census
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where δ = 3 − 6p. Focusing on the root that lies between 0 and 1, we thus obtain
the steady state

x∗ =
1

1 +
√

3− 6p

Because ∆x is positive for x between 0 and x∗, and is negative for x between x∗ and
1, the steady state x∗ is the unique stable equilibrium.

Fixing a particular value of p, we could have found this steady state graphically
by plotting ∆x as a function of x, with x∗ determined by the intersection of ∆x with
the horizontal axis. To illustrate, we suppose that p = 1/3, and plot ∆x below.

>> p = 1/3; n = 100; L = n*(n-1)/2; x = 0:.01:1;
y = (3 * x.^2 .* (1-x) * (2*p-1) + (1-x).^3)/L;
plot(x,y,[0 1],[0 0]) % plot delta x as a function of x
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As we’ve already learned from the time path diagram, this diagram indicates that
the system converges to x∗ = 1/2 when p = 1/3. We also learn from this diagram
(and could verify through simulation) that the process approaches the steady state
more rapidly from below (when x0 < x∗) than above (when x0 > x∗).

Alternatively, we can plot x∗ as a function of p to see how the steady state changes
as we vary this adjustment parameter.
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>> p = 0:.01:.5; x = 1./(1+sqrt(3-6*p))
>> plot(p,x) % steady state x as a function of transition probability p
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From this diagram, we may once again confirm that p = 1/3 implies x∗ = 1/2. But
we also learn that p has a nonlinear effect on x∗. More precisely, an increase in p has
a relatively small effect on x∗ when p is close to 0. But when p is near 1/2, small
increases in p have a large effect on the steady state x∗.

14.4 Further reading

We have already noted the important contributions made to balance theory by Hei-
der (J Psych 1946) and Cartwright and Harary (Psych Rev 1956). The graph-theory
textbook by Harary, Norman, and Cartwright (Structural Models, Wiley, 1965) of-
fers a useful review. Chartrand (Introductory Graph Theory, Dover, 1977) provides
an elementary introduction, and also discusses clusterability (introduced by Davis,
Human Relations 1967). Early attempts to develop a process model were made
by Flament (Applications of Graph Theory to Group Structure, Prentice-Hall, 1963)
and Abell (Sociology 1968). Recent sociological contributions include Doreian and
Krackhardt (J Math Soc 2001) and Hummon and Doreian (J Math Soc 2003). The
adjustment process considered in this chapter, along with one-dimensional nonlin-
ear approximation, are drawn from Antal et al (Physica D 2006). That paper also
considers a second (less myopic) adjustment rule which causes networks to rapidly
become balanced.
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14.5 Appendix

14.5.1 Balancedynamics m-file

function [d, y] = balancedynamics(p, x0, n, T)
% [d, y] = balancedynamics(p, x0, n, T)
% balance theory simulation model based on Antal et al (2006)
% input p = probability that type-1 triad becomes type-0 triad
% input x0 = probability that each link is initially positive
% input n = number of actors
% input T = number of iterations
% output d is a T x 4 matrix giving triad census [d0 d1 d2 d3] for each period
% output y is a vector of length T giving number of positive links for each period

L = n*(n-1)/2; % number of links
A = rand(n) < x0; A = triu(A,1); % initial random graph

y = []; d = [];
for t = 1:T

y = [y; sum(sum(A))]; % count number of positive links

P = A|A’; N = ~P - eye(n);
d0 = trace(P*P*P)/6; d1 = trace(P*P*N)/2; d2 = trace(P*N*N)/2; d3 = trace(N*N*N)/6;
d = [d; d0 d1 d2 d3]; % triad census

v = randperm(n); v = v(1:3); v = sort(v);
s12 = A(v(1),v(2)); s23 = A(v(2),v(3)); s13 = A(v(1),v(3)); s = s12 + s23 + s13;

if s == 1 | s == 3 % triad is balanced
continue

end

r = rand;

if s == 0 % all edges are negative
if r < 1/3

A(v(1),v(2)) = 1;
elseif r < 2/3

A(v(2),v(3)) = 1;
else

A(v(1),v(3)) = 1;
end

end

if s == 2 % one edge is negative
if s12 == 0

if r < .5*(1-p)
A(v(2),v(3)) = 0;

elseif r < (1-p)
A(v(1),v(3)) = 0;
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else
A(v(1),v(2)) = 1;

end
elseif s23 == 0

if r < .5*(1-p)
A(v(1),v(2)) = 0;

elseif r < (1-p)
A(v(1),v(3)) = 0;

else
A(v(2),v(3)) = 1;

end
else

if r < .5*(1-p)
A(v(1),v(2)) = 0;

elseif r < (1-p)
A(v(2),v(3)) = 0;

else
A(v(1),v(3)) = 1;

end
end

end
end

12


