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Abstract

The uneven geographic distribution of colleges in the United States endows students

with uneven access to colleges depending on where they live. To examine the implication

of this for student welfare, we estimate a model of high school students’ college choices,

allowing for rich heterogeneity in students’ preferences for college attributes. We use data

on students’ enrollment decisions and application decisions—i.e., the sets of colleges to

which they applied—to identify the distribution of students’ preferences, and find that

place indeed matters: the expected value of applying to college differs dramatically across

states and across counties within a state.
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1 Introduction

Some of young adults’ most consequential decisions are about whether and where to attend

college. The weight of these choices reflects both the importance of college as an economic

investment, since the choice of college can substantially influence both near-term costs and

lifetime earnings,1 and the fact that college is also an expensive consumption good, since

a student’s enjoyment of the multi-year college experience depends on the match of college

attributes to her preferences. However, the uneven spatial distribution of colleges in the

United States means that not all students are endowed with equal access. Given that students

typically face much lower in-state tuition than out-of-state tuition, cross-state differences in

the quality of public colleges directly translate to differences in students’ ex ante expected net

returns to a college education depending on which state they live in.2 Moreover, to the extent

that students prefer to attend college close to home, they face unequal access to colleges even

within a state.

Table 1 shows the relevance of both types of spatial dispersion faced by college-bound students

surveyed in the Educational Longitudinal Study 2002.3 The first row shows the cross-student

distribution of the quality of the flagship college in the student’s home state, as proxied by

the median SAT score of admitted freshmen.4 At the lower end, 5% of the students are from

states where the flagship colleges have a median SAT score of 1080 or lower; at the upper end,

5% are from states where the flagship colleges have a median SAT score of 1325 or more. The

remaining rows summarize the cross-student distribution of the number of four-year colleges

within a 250 kilometer radius of the student’s home. Some students have over 200 colleges

nearby, including over 50 high-SAT colleges; some have fewer than 10 colleges nearby, with

none of them being high-SAT colleges.

However, whether the heterogeneity described in Table 1 should cause concerns about “edu-

cation deserts” depends on students’ preferences, as would policies aimed at addressing such

concerns. For example, if students care little about distance, then it will not matter that stu-

dents from Wyoming have to travel greater distances from home to attend college. Similarly,

if students do not have strong attachment to their home states, then cross-state differences in

1See, for example, Brewer, Eide, and Ehrenberg (1999) and Black and Smith (2006).
2Another major source of inequality, one that has been the focus of a large literature, is credit constraints.

See Monge-Naranjo and Lochner (2012) for a review.
3We classify as “college-bound” any student who applied to at least one four-year college.
4Our data report the 25th and 75th percentiles of SAT scores, but not the 50th. We compute the average

of the 25th and 75th percentiles and refer to it as the median for expositional simplicity.
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Table 1: Heterogeneity in College Access

Percentiles

5 25 50 75 95

Median SAT of home state’s flagship collegea 1080 1160 1195 1260 1325
# colleges within 250kmb 6 24 54 93 210
# private colleges within 250km 3 14 36 70 148
# public colleges within 250km 3 11 18 27 63
# top-quartile-SAT colleges within 250km 0 6 16 26 56
aThe average of the 25th and 75th percentiles of SAT scores of the college reported in IPEDS.
b250km radius around the centroid of one’s home zip code.

the quality of public colleges could be mitigated via tuition subsidies that offset the out-of-

state vs. in-state tuition difference for students who attend high-quality out-of-state public

colleges.5 However, if students do care about proximity, and to different degrees, then such

subsidies will do little to level the playing field for students whose willingness to pay to stay

in their home states exceeds the out-of-state vs. in-state tuition difference; instead, these

subsidies will disproportionately benefit students who value college quality over proximity.

Moreover, if the latter group tend to have more advantaged family backgrounds, these sub-

sidies will be regressive in nature, raising equity concerns. More generally, the efficiency

and equity implications of education policies clearly depend on the distribution of student

preferences for various college attributes.

This paper aims at recovering a richer characterization of students’ preferences for college

attributes by incorporating information about the sets of colleges to which they applied, which

we will refer to as students’ application sets.6 The essential idea is that when we observe the

set of colleges a student applied to, the strength of her preference for a given attribute is

reflected in the similarity of that attribute across colleges in the set. For example, conditional

on observables, a student who applies only to colleges near her home may have very different

preferences than her counterpart who applies only to academically competitive colleges: the

former appears to care mostly about geographic proximity while the latter mostly about

academic quality. Intuitively, recovering the distribution of preferences is then based on

observing the fractions of students who appear to care a lot about the given characteristic.

5This statement is made in a partial equilibrium (individual optimality) sense. Large-scale policies such as
cross-state reciprocal tuition agreements can serve a similar purpose, but likely stimulate general equilibrium
responses.

6Some studies have attempted to quantify which factors are influential in students’ college choice decisions
(e.g., Manski and Wise 1983, Avery and Hoxby 2004, Long 2004, Dillon and Smith 2017); while another set
of studies has focused specifically on the impact of tuition or financial aid on college choices (e.g., Curs and
Singell 2000, Dynarski 2003, Avery and Hoxby 2004, Kane 2007 and Deming and Walters 2018).
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Our model of student preferences follows the approach that is common in Industrial Or-

ganization studies of differentiated product markets, casting student utility as a function

of college characteristics. Heterogeneity in preferences is incorporated by allowing student-

specific coefficients on those characteristics. Application sets are most informative about

students’ preferences—i.e., their vectors of coefficients for college characteristics—if we fully

utilize comparisons of all colleges included and excluded from these sets. Given the large

number of colleges to choose from (and hence combinatorially large number of possible appli-

cation sets), empirically modeling the optimal application decision becomes a daunting task.

However, there are useful properties that the optimal set must obey,7 which we utilize in

our empirical approach: we derive necessary conditions for optimality of students’ observed

application sets, and base our estimator on these conditions.

We estimate our model with data from the Educational Longitudinal Study (ELS) 2002,

the National Postsecondary Student Aid Study (NPSAS), and the Integrated Postsecondary

Education Data System (IPEDS). The ELS data provide information on application sets,

admission and enrollment outcomes, and binary indicators of whether financial aid was re-

ceived at each of the colleges to which a student was admitted. We supplement ELS with

more detailed information from NPSAS about financial aid amounts. The IPEDS data pro-

vide information on college attributes.

We use our estimates of students’ preferences to answer two questions about college choices.

First, we quantify the implications of the uneven spatial distribution of colleges for student

welfare. Following in the spirit of Chetty et al (2014) and several other recent papers that

have emphasized the geography of opportunity,8 we use our estimates to calculate ex ante

welfare for the same student were she to live in different counties across the U.S. We find that

geographic variation in student welfare is considerable; that the variation is more pronounced

for high-SAT students; and that the geographic patterns are quite different for high-SAT stu-

dents vs. low-SAT students. For example, we find that across U.S. counties the interquartile

range of the ex ante expected utility for an average high-SAT, low-income college-bound

student is equivalent to more than 2,200 tuition dollars, compared to about 1,600 tuition

dollars for her low-SAT, low-income counterpart. There is important variation both across

states and across counties within a state: for low-SAT low-income students, over 70% the

variation is within-state across counties, while for high-SAT high-income students, 60% of

7See Chade and Smith (2006) for a theoretical analysis.
8See, for example, Abbott and Gallipoli (2017); Corak (2019); Berger (2018); Berger and Engzell (2019);

and the follow-up paper by Chetty and Hendren (2018).
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the variation is across states. We discuss the broader implications of these findings in our

concluding section.

Second, we predict the substitution patterns that would result if a student were to face out-

of-state tuition rates in all states. Peltzman (1973) argues that subsidies in the form of lower

tuition for in-state students can perversely lead to a reduction in education—the idea being

that inexpensive public colleges may attract students who otherwise would have attended

costlier but higher-quality colleges. As a preliminary, partial-equilibrium investigation of this

hypothesis, we use our estimated model to simulate the choices of students if they had to

pay the out-of-state tuition at their home-state public colleges. We find that while high-

income students with high SAT scores would enroll in colleges with higher SAT scores on

average, across all students the average quality of the chosen college goes down, largely

because many students simply switch to lower quality in-state universities that charge lower

out-of-state tuition than their higher-quality counterparts. Our findings suggest that based

on substitution effects alone, increasing in-state tuition would have a very limited effect in

pushing students toward higher quality institutions.

Our paper contributes to the broad literature on the economics of higher education, especially

the branch that studies the college market through the lens of structural models. For instance,

Arcidiacono (2005) and Howell (2010) estimate structural models of students’ choices and use

them to address questions about affirmative action policies. Epple, Romano and Sieg (2006),

Fu (2014), Bodoh-Creed and Hickman (2018), Fillmore (2018), Cook (2019) and Kapor (2020)

estimate equilibrium models of the college market in which both students and colleges make

strategic decisions.

The geography of college opportunity has been analyzed in the sociology literature, where

researchers such as Turley (2009) and Hillman (2016) have documented geographic disparities

in college availability. These studies emphasize that most students choose colleges in close

proximity to their homes, and the number of nearby colleges varies considerably depending

on where a student lives. Moreover, this variation is correlated with race and socioeco-

nomic status, with minorities and lower-income students having fewer nearby colleges on

average. Hillman (2016) contemplates whether some locations should be described as educa-

tion deserts. Our estimated model allows us to quantify such geographic disparities not just

in terms of proximity but also incorporating other college characteristics that students value.

Our estimation method, which exploits necessary conditions for optimality of students’ ap-
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plication sets, is similar to approaches other authors have used in the IO literature. For

example, Ellickson, Houghton, and Timmins (2013) use profit inequality conditions to esti-

mate the strength of network economies for retail chains like Walmart and Target. As in our

application, it would be infeasible to characterize the exact optimal choice of where these

chains should locate their stores; but estimation can be based on necessary conditions for the

optimality of those choices. Our use of data on application sets is somewhat similar to the

use of survey data by Avery, Glickman, Hoxby, and Metrick (2013) to construct a revealed

preference ranking of U.S. universities.9 They surveyed high school seniors to determine the

set of colleges to which each student was admitted, as well as the single college the student

chose to enroll in. Knowing the admissions set enables them to characterize each student’s

chosen university as the winner of a small tournament, and their overall ranking of colleges

is essentially an aggregation of the preference rankings implied by these tournaments.

2 Data

We analyze a sample of college applicants from the Educational Longitudinal Study (ELS)

2002 run by the National Center for Education Statistics (NCES). The ELS 2002 surveyed

a nationally representative sample of students as 10th graders in 2002 and as 12th graders

in 2004, and also conducted follow-up surveys of the same students in 2006 and 2012. For

our purposes, the important survey questions are about the students’ college application and

enrollment decisions: for each student, we know which colleges they applied to, where they

were admitted, whether they received financial aid at each of the colleges to which they

were admitted, and where they chose to enroll. We limit our sample to the respondents who

reported applying to college while still in high school, which yields a sample of 7,409 students,

whose characteristics are summarized in Table 2.

Our data on college characteristics come from NCES’s Integrated Postsecondary Education

Data System (IPEDS) for the academic year 2004-2005, to match the year when the students

in our sample would have been entering college. In estimating our college choice model,

we include only colleges that offer four-year degrees, and we exclude the five U.S. service

academies and colleges whose Carnegie classification is “Special Focus Institution”.10 The

9Data on students’ application and admission sets have been used elsewhere to study heterogeneous effects
of colleges on student outcomes, e.g., Dale and Kruger (2002), Arcidiacono, Aucejo, and Hotz (2016), Bleemer
(2021), and Mountjoy and Hickman (2021).

10These are mostly seminaries/theology schools, technical colleges, and specialized medical schools.
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Table 2: Summary of Student Characteristics (N = 7, 409)

Percentiles

Mean Std. Dev. 10 50 90

High school GPA 3.12 0.58 2.30 3.19 3.84
SAT score 1,037 201 780 1,030 1,300
Family income 79,650 60,090 22,500 62,500 150,000
Female 0.55
Black 0.12
Hispanic 0.09
College-educated Parents 0.56

resulting sample includes 1,337 four-year colleges, whose characteristics are summarized in

Table 3.

The cost of attending a college includes both tuition and fees.11 For public colleges, the cost

often depends on a student’s state of residency due to differences between in-state and out-

of-state tuition. Among the 492 public universities in the data, 479 charge higher tuition for

out-of-state students than in-state students, with out-of-state tuition on average over $7,400

higher. At least 54 of these public colleges have reciprocity agreements that allow neighboring

states’ students to pay discounted tuition. However, many of the most prestigious flagship

universities opt out of their states’ reciprocity agreements. For example, UC Berkeley and

the University of Michigan do not offer in-state tuition to students from neighboring states

even though other colleges in California and Michigan do.12

A final data source is the 2004 wave of the NCES National Postsecondary Student Aid Study

(NPSAS), which we use to augment the information from the ELS about students’ financial

aid outcomes. While the ELS survey only indicates whether a student received any financial

aid at each college to which she was admitted, the NPSAS data also include information on

the amounts and sources of financial aid received. As we explain below, we use these data

from NPSAS to estimate the distribution of aid amounts conditional on receiving aid.

Before outlining our model, we first describe several key facts and patterns in the data.

Table 4 shows the distribution of application set sizes (i.e., how many colleges a student

applies to). An important and perhaps surprising fact is that 30% of students apply to only

one college. Applying to multiple colleges is more common for students who have higher

11The tuition numbers reported in Table 3 include fees, and throughout the paper when we say or report
“tuition” we mean “tuition plus fees.”

12Our data on reciprocity agreements were obtained from a survey conducted in 2001 by the Cornell Higher
Education Research Institute.
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Table 3: Summary of College Characteristics (N = 1, 337)

Percentiles

Mean Std. Dev. 10 50 90

Tuition: Public In State 5,088 2,023 2,955 4,658 7,891
Tuition: Public Out of State 12,504 3,779 8,354 12,384 17,097
Tuition: Private 18,830 5,977 11,610 18,230 27,703
SAT of admitted students 1,065 124 930 1,050 1,225
# of freshmen 938 1,126 157 504 2,270
# of full-time undergraduates 4,205 5,334 629 2,034 10,984
Fraction women 0.58 0.13 0.47 0.57 0.71
Fraction Black 0.12 0.19 0.01 0.06 0.24
Fraction Hispanic 0.06 0.09 0.01 0.03 0.13
NCAA Division 1 sports∗ 0.09 0.28 0.00 0.00 0.00
∗ This is an indicator equal to one if the college has an NCAA Division 1 football team.

family income and higher SAT scores.

Table 4: Distribution of the Number of College Applications

1 2 3 4 5+

All students 0.30 0.24 0.17 0.11 0.18
Low income, Low SAT 0.39 0.30 0.16 0.07 0.08
Low income, Middle SAT 0.34 0.26 0.16 0.10 0.14
Low income, High SAT 0.27 0.15 0.15 0.14 0.28
Middle income, Low SAT 0.41 0.27 0.18 0.07 0.07
Middle income, Middle SAT 0.32 0.25 0.19 0.11 0.13
Middle income, High SAT 0.24 0.22 0.17 0.13 0.24
High income, Low SAT 0.27 0.30 0.19 0.13 0.10
High income, Middle SAT 0.24 0.22 0.15 0.12 0.27
High income, High SAT 0.15 0.15 0.17 0.14 0.39

Cells indicate fractions. Low (high) income students are those whose parents’ total family
income is 35,000 or less (100,001 or more). Low (high) SAT students are those whose SAT

score is 950 or less (1,130 or more).

Table 5 shows some examples of “overlaps”—namely, colleges that tend to appear together

in a student’s application set. In some cases the overlaps reflect similarity in quality—for

example, students who applied to Harvard also tended to apply to Yale, Princeton, and

UPenn. But more often the overlaps reflect geographic proximity. For example, students

who applied to the University of Georgia also commonly applied to Georgia State, Auburn,

and Georgia Tech. This suggests most students prefer to attend colleges close to their homes,

which means that differences in the availability of nearby colleges (as described above in

Table 1) could translate into economically important differences in the ex ante value of
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students’ college choice sets.

Table 5: Examples of Application Overlaps

College Three most common overlaps

U Georgia Georgia State, Auburn, Georgia Tech
UNC Chapel Hill NC State-Raleigh, Duke, Elon U
UC Berkeley UCLA, UC San Diego, UC Davis
U Wisconsin-Madison U Minn.-Twin Cities, Marquette, U Wisconsin-Milwaukee
Stanford UC Berkeley, UC San Diego, UCLA
New York U Boston U, Columbia, Boston College
Harvard Yale, Princeton, Penn

Overlaps are the additional colleges most commonly applied to by students who applied to

the college listed in the left column. Overlaps are listed starting with the most common.

3 Model

Our purpose is to estimate high school students’ preferences for college attributes using a

framework that leverages not only those students’ enrollment decisions (which college they

choose to attend), but also their application decisions (which colleges they choose to apply

to). As explained above, knowing the full set of colleges to which a student applied should

improve estimation of preference heterogeneity, since similarities in the applied-to colleges

reflect the strength of the student’s preferences for certain characteristics.

In this section we outline the structure of our model, specifying the decisions students make

and the uncertainties they face when making those decisions. Details of how various functions

are parameterized for estimation are described in Section 4.

3.1 Primitives

There are J (four-year) colleges, each characterized by a vector Wj of attributes including

location, academic quality, a public/private dummy, and college athletics. Each student i is

characterized by a vector of observable characteristics Xi (including location, demographics,

family background, and test scores) and a vector of unobservable tastes (βi) associated with

the various college characteristics. Each student makes two decisions in our model: which

colleges to apply to, and—conditional on the admissions and financial aid outcomes—which

college to enroll in.
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3.1.1 Admissions and Net Tuition

Students face uncertainty over the outcomes of admissions and financial aid. The probability

that student i is admitted to college j is assumed to be a function of student and college

observable characteristics, given by

pij = P (Xi,Wj) . (1)

A student may obtain financial aid to attend college, the amount of which is a stochastic

function of student characteristics, college characteristics and gross tuition tj . The net tuition

tij for student i attending college j is given by

tij = f (Xi,Wj , tj) + ηij , (2)

where ηij is a random shock that is realized after the student makes her application de-

cisions.13 Students know the admissions probabilities and the distribution of financial aid

amounts when they make their application decisions.

3.1.2 Student Preferences

Students care about the net tuition cost tij and college characteristics Wj , and both the

sign and strength of student preferences for these characteristics may vary with their own

characteristics Xi and taste vector βi. Student i’s utility from attending college j is given by

uij = U (Xi,Wj , tij ;βi)

There is an outside option available to all, the value of which is normalized to zero ex ante.

After applications are submitted, the outside option is subject to a shock ui0 that captures

unforeseen events that change the opportunity cost of attending college (e.g., getting a job

offer).

13Financial aid includes both government aid (e.g., Pell grant) and college-specific aid.
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3.2 Student Problem

Student i faces a two-stage decision problem. In the first stage she chooses a set of colleges

to apply to, after which admissions, financial aid outcomes, and the shock to the outside

option are realized. Then, in the second stage, she chooses to enroll in one of the colleges

that admitted her, or the outside option. To characterize students’ optimal choices, we begin

with the second stage enrollment decision and work backward.

Given a set of admissions and financial aid outcomes, student i chooses her most preferred

college within the set Oi of colleges that admit her, or the outside option, i.e.,

v (Oi, Xi, βi, ηi, ui0) ≡ max{{uij}j∈Oi , ui0} (3)

Denoting the ex-ante value of being admitted to Oi as v(Oi, Xi, βi) ≡ E [v (Oi, Xi, βi, ηi, ui0)] ,

we can write the value of an application portfolio Y ⊆ J for student i as

V (Y,Xi, βi) ≡
∑
O⊆Y

Pr(O|Xi)v(O,Xi, βi)− C(|Y |),

where Pr(O|Xi) is the probability that i is admitted to the set of colleges O. |Y | is the number

of colleges in Y and C(|Y |) is the application cost. Denoting the set of J colleges as J , the

student’s application problem is therefore

max
Y⊆J
{V (Y,Xi, βi)}. (4)

3.2.1 Simplification

Uncertainty about admissions makes a student’s application decision (4) a complicated port-

folio problem rather than one of simply listing the colleges she most wishes to attend. For

example, admissions uncertainty creates incentives for students to include “safety schools” in

their application sets.14 Moreover, the complexity of this portfolio problem increases com-

binatorially with the number of colleges, J . Other studies that examine students’ college

choices have typically restricted J to be a small number, either by allowing for only a small

number of colleges in the choice set (e.g., Arcidiacono (2005) and Cook (2019)) or by grouping

colleges into a small number of types (e.g., Epple, Romano and Sieg (2006) and Fu (2014)).

14See Chade, Lewis, and Smith (2014) for discussion and analysis of the student’s portfolio choice problem.
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Since the goal of this paper is to gain a more precise understanding of students’ heterogeneous

preferences over college attributes, we treat each college as a unit (instead of grouping them)

and allow for a large number of colleges in the consideration set (J = 80 in our empirical

application), which makes solving the full problem (4) a daunting task.

However, a student’s application problem (4) can be viewed as a two-layer problem, where a

student chooses the best portfolio of a given size n in the inner layer and optimizes over n in

the outer layer, i.e.,

max
n∈{1,..J}

{ max
Y⊆J s.t. |Y |=n

{V (Y,Xi, βi)}}. (5)

To simplify our analysis we focus on the inner layer of (5) and solve a student’s problem taking

the observed application set size n as given. The cost of this simplification is that we cannot

estimate the application cost function C(|Y |). This also means that in the counterfactual

simulations below we must hold each student’s n fixed at the value we observe in the data.15

Even taking n as given, with J = 80 (as in our empirical application) it is computationally

infeasible for an estimator to find the exact optimal set of colleges to include in the application

set. For example, if n = 4 there would be over 1.5 million possible sets to check. The following

assumption greatly facilitates the search for a tractable estimator.

Assumption 1: Conditional on observables, student i’s admissions outcomes are indepen-

dent across colleges, i.e.,

Pr(O|Xi) =
∏
j∈O

pij
∏

j′∈Y \O

(1− pij′). (6)

Assumption 1 is not entirely innocuous: it would be violated if multiple colleges receive

similar information about student i beyond Xi and interpret it in similar ways. In order

to make Assumption 1 as realistic as possible, in our empirical analysis we include a rich

set of observables in the admissions probability function P (Xi,Wj), and we assume the

independence of admissions outcomes conditional on those observables.

15Note that we have assumed that the cost of application C(|Y |) depends only on the size of the application
set |Y | rather than the components of Y . In reality, some colleges may have higher (pecuniary and/or non-
pecuniary) application costs than others, and when we estimate our model these differences will be absorbed
into students’ preferences for colleges. For example, if higher-quality colleges are more likely to require
supplemental essays, our estimates of students’ preferences for quality will absorb these higher application
costs.
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Under Assumption 1, we can form an estimator based on necessary conditions for optimality

of the application set, as stated in the following Proposition.

Proposition 1. Given Assumption 1, a necessary condition for the optimality of application

set Yi among sets of the same size is that for all y∗ ∈ Yi and all k /∈ Yi,

piy∗
∑

{O′i}⊆Yi\y∗
Pr
(
O′i|Xi

)
v
({
O′i, y

∗} , Xi, βi
)
− pik

∑
{O′i}⊆Yi\y∗

Pr
(
O′i|Xi

)
v
({
O′i, k

}
, Xi, βi

)
≥ (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

Pr
(
O′i|Xi

)
v
(
O′i, Xi, βi

)

The proof of this proposition is in Appendix A. In essence, the proposition says that for the

observed application set to be optimal, it must be that all possible pairwise swaps—of one

college outside the set for one of the colleges in the set—would weakly reduce the expected

utility. Our estimator utilizes these necessary conditions for optimality and involves checking

these pairwise swaps, which is tractable because for a student who applied to n colleges, we

only need to check n(J −n) conditions instead of comparing all
(
J
n

)
possible application sets.

In a setting similar to ours, Larroucau and Rios (2018) prove that a condition analogous to

ours (relating to what they call “one-shot swaps”) is sufficient for optimality. However, this is

not the case in our model: because the post-application shocks can create complementarities

between certain pairs of colleges, the condition from Proposition 1 is necessary for optimality,

but not sufficient.

4 Estimation

Our primary objective is to structurally estimate the distribution of students’ preferences for

college characteristics, rather than colleges’ preferences for students. As such, we estimate

parameters governing admissions probabilities and financial aid distribution outside of the

model. In this section we briefly describe our estimation of these two components, and then

describe our empirical specification for student preferences and how we estimate them within

the model.
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4.1 Admissions Probabilities and Financial Aid

Admissions Probabilities are estimated via probit regressions in which student i’s prob-

ability of admission at college j is a function of the student’s characteristics, the college’s

characteristics, and their interactions. In the interest of flexibility, we estimate the model

separately for six categories of colleges defined by (public vs. private) × (tercile of SAT cj ),

where SAT cj (the median SAT score of students in college j) is a proxy for college quality that

we obtain from IPEDS.16 In each case, the included covariates are student high school GPA;

student SAT score; median SAT of the college SAT cj ; an indicator for whether student i’s SAT

score is below the 25th percentile of SAT scores in college j; an indicator for whether college j

is in the student’s home state; an indicator for whether the student has taken any Advanced

Placement course; indicators for female, black, and Hispanic; an indicator for whether the

student is from a single-parent family; an indicator for whether at least one of the student’s

parents graduated from college; and indicators for 7 family income categories.

Importantly, the probit regressions deliver predicted admissions probabilities that exhibit

reasonable patterns (e.g. they are increasing in student’s GPAs and SAT scores) and cover a

sensible range (e.g. low-SAT students’ predicted probabilities of being admitted to Harvard

are around 3 percent, and high-SAT students’ predicted probabilities of being admitted to

non-competitive public universities are above 90 percent). Additional details and fit statistics

are available in an online appendix.

Financial Aid includes both government aid (the Pell grant) and college-specific aid. We

compute the Pell grant following the government-specified formula, where the amount of grant

depends mainly on one’s expected family contribution (EFC) and the cost of attendance.

For college-specific aid, we model the probability of receiving aid in a way that mirrors the

admissions probabilities, with probit regressions run separately for the six different college

types. In addition to the covariates listed above for the admissions model, we also allow the

probability to depend on the college’s tuition and the student’s EFC. This yields a predicted

probability that student i will receive aid at college j for any i-j pair.

To estimate the amount of college-specific aid received, conditional on receiving any, we use

the NPSAS data (described in Section 2). We model the log of aid received as a truncated

normal with the upper truncation point set at 1.2 times the maximum observed amount of

16Each college in IPEDS reports the 25th and the 75th percentiles of SAT scores of its enrollees; we take
the average of these two percentiles as SAT cj .
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aid,17 and the mean being a linear function of covariates including the college’s gross tuition,

the student’s EFC, sex and race dummies, student SAT score, college median SAT score, an

indicator for whether the student is in the same state as the college, and a few interactions

among these variables. Full details are in the online appendix referenced above. The NPSAS

data introduce a possible selection bias because they only report aid amounts at students’

chosen colleges—i.e., the colleges where they chose to enroll. If students tend to enroll in

colleges that offer more aid, then the aid amounts of enrolled students will tend to be higher

than the aid amounts offered to admitted students, so our model may slightly overpredict aid

amounts.18 Fortunately, selection is not a problem in our model at the aid vs. no-aid margin,

since the ELS data report whether any aid was received at all colleges to which the student

applied.

4.2 Student Preferences

Empirical Specification Student i’s utility at college j is given by

uij = − (γ1LowInci +MidInci + γ2HighInci) tij (7)

+ α0 + α1(SATi − SAT cj )2+ + α2(SATi − SAT cj )2− + α3Blacki + α4Hispanici

+ exp (β1,i)

[
qj + δ1

(
qj − q85th

)
+

]
+ β2,i [ln (Distij) + δ2OutStateij ]

+ β3,iPrivatej + β4,iNCAAIj .

The first component of this function reflects the student’s sensitivity to net tuition (tij), which

may differ across students from different family income groups. We categorize a student i’s

family income as low (LowInci = 1) if it is less than $35,000, as high (HighInci = 1) if it is

above $100,000, and as middle (MidInci = 1) otherwise. We normalize the tuition coefficient

for middle-income students to 1, so student preferences for various college attributes are

measured in tuition dollars. Parameters γ1 and γ2 measure the price sensitivity of low- and

high-income students, respectively.

17We found that if we simply model aid amounts as being log-normally distributed without any upper
bound, our estimator for student preferences would sometimes draw simulated aid amounts that were unreal-
istically high—i.e., out in the long tail of the log-normal distribution.

18To check whether this selection effect is likely to be important, we examined data from the National
Longitudinal Survey of Youth, which reports aid even for unaccepted offers. We estimated models for aid
amounts using both the full sample of all offers and the selected sample of accepted offers, and found that the
latter predicted aid amounts only slightly higher than the former.
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The parameter α0 represents the overall attractiveness of attending a 4-year college relative

to the outside option for an average student; α3 and α4 are introduced to capture potential

differences in preferences among black and Hispanic students. To allow for the possibility

that a student may prefer colleges that closely match her own academic ability, we introduce

parameters α1 and α2 to measure students’ preference for the difference between her own

SAT (SATi) and the median SAT score at the college (SAT cj ), allowing for asymmetry in the

preference for over-match vs. under-match.

For our purposes, the most important components of the utility function (7) are the col-

lege characteristics over which students have heterogeneous preferences, as reflected by the

student-specific βk,i coefficients. First, students are allowed to have heterogeneous preferences

for a college’s quality qj . Following the method in Dillon and Smith (2017), we construct

qj as an index that combines three characteristics of each college j : the median SAT, the

average faculty salary, and the faculty-student ratio.19 Since quality differences are most

likely to be meaningful for colleges toward the upper end of the distribution, we allow the

slope of college quality to depend on whether or not qj is above the 85th percentile of the qj

distribution across our sample of four-year colleges (q85th = 0.73).20

Student-specific preferences for proximity are represented by β2,i, where we use a distance

index that combines actual distance (Distij) and an indicator for whether j is out of student

i’s home state. We measure Distij as the distance in kilometers between college j and the

centroid of student i’s home zip code. Estimates of students’ preferences for proximity depend

on the extent to which students in our data apply to (and enroll in) colleges close to home.

In reality these “preferences” can arise from factors beyond the cost of physical distance and

the attachment to one’s home state. For example, a student may know less about colleges

farther away and may therefore be less likely to apply. Also, applications to multiple nearby

colleges may be driven by application costs rather than preferences for poximity, since some

colleges (e.g. in the University of California and Pennsylvania State systems) can be applied

to in bundles. Thus, what we estimate and label as a preference for proximity should be

interpreted broadly, since it may also reflect unmodeled application costs and differences in

the information students have about close vs. distant colleges.

Finally, students have heterogeneous preferences over whether or not the college is private

19Dillon and Smith (2017) use the percent of applicants rejected as a fourth measure. We do not use this
measure because we are interested in application and admissions. See Appendix C for details.

20The results are similar if we use SAT cj + δ1
(
SAT cj − SAT c,85th

)
+

instead of qj + δ1
(
qj − q85th

)
+

as the
quality measure. The correlation between SAT cj and qj is 0.91.

16



(Privatej ∈ {0, 1}) and for whether or not the college has an NCAA Division I football team

(NCAAIj ∈ {0, 1}). The latter serves as a proxy for whether major sporting events are an

important aspect of the student experience at college j.

Student-specific preference parameters βk,i are drawn from the following normal distribution,

βk,i = µk (Xi) + εk,iσk, with εk,i ∼ N (0, 1) .

The mean tastes for college quality (β1,i) and private colleges (β3,i) are allowed to vary with

family income. The mean taste for distance (β2,i) is allowed to vary with family income and

the average daily travel distance in one’s home state (AveDi), which captures the possibility

that students may “benchmark” the home-college distance against their everyday experi-

ence.21 The mean taste for Division I sports (β4,i) is assumed to be common across students.

Formally, the mean tastes for these attributes are given by

µk (Xi) =


µk,0 + µk,1LowInci + µk,2HighInci for k = 1, 3

µk,0 + µk,1LowInci + µk,2HighInci +µk,3AveDi for k = 2

µk,0 for k = 4.

Students are subject to post-application shocks to their outside option, drawn from a normal

distribution:

ui0 = ε0,iσ0 (Xi) , with ε0,i ∼ N (0, 1) .

The dispersion of shocks is allowed to be different for low-income and/or low-SAT students,

such that

σ0 (Xi) = exp [λ0 + λ1LowInci + λ2I (SATi ≤ 950)] . (8)

We allow this layer of flexibility to better fit the data: conditional on admissions and financial

aid outcomes, low-income and/or low-SAT students have a much lower enrollment rate than

other students, which holds even if we compare students with similar application behaviors.

Such patterns can arise, for example, if low-income households are subject to higher income

volatility (unemployment), which would be captured by a larger dispersion of post-application

shocks faced by these students.

21Data for AveDi are obtained from the National Household Travel Survey (NHTS) 2009 Transferability
Statistics. It first sums the travel distance of all members in a household on a weekday, and then takes the
average across households in a state. The variable ranges from about 68.4 kilometers in DC to about 116.7
kilometers in South Dakota.

17



Identification As in a standard discrete choice model, students’ overall propensities to

choose different colleges identify their average preferences for the college characteristics in-

cluded in the model. What may be less obvious is how the data can identify heterogeneity in

students’ preferences—i.e., the variances σ2k of preference coefficients βk,i. For that, we rely

on the richness of our data, which goes beyond a typical dataset on consumer’s choices in two

aspects. First, we observe students’ preference-revealing choices at both the application stage

(which colleges to apply to) and the enrollment stage (which college to enroll in among the

set of colleges the student was admitted to). The second and more important aspect is that

we observe students’ full application sets. The strength of a particular student’s preference

for a given college characteristic is reflected in the similarity of the applied-to colleges in that

characteristic. For example, if a student applied mostly to nearby colleges (e.g., the first

two examples in Table 5), the model will infer that the student had a strong preference for

proximity to home (a large negative β2,i); if a student applied mostly to academically com-

petitive colleges (e.g., the last example in Table 5), the model will infer that the student had

a strong preference for college quality (a large β1,i); similarly, a student who applied only to

universities with NCAA Division 1 sports programs will be inferred to have a high β4,i. Data

on application sets thus provide information about an individual student’s preferences, and

heterogeneity in preferences can then be naturally identified from variation across students.22

Since we rely on similarities between colleges in students’ application sets to learn about their

preferences, the choices of students who applied to many colleges are the most informative.23

However, data from students in college-rich locations are not necessarily more informative

than from students in locations with few colleges. The consideration set varies across students,

but its size is large and the same across all students. This means even students in regions

with few colleges are considering a large number of options with different characteristics,

which helps identify the preferences for those characteristics.

Note that there are multiple reasons why students face different net prices, which lead to

rich variation we use for identifying their tuition sensitivity. The sources of price variation

include tuition differences across colleges, in-state versus out-of-state tuition differences in

the case of public colleges, and financial aid differences across college-student pairs.

22Our use of data on application sets is related to the use of “second-choice data” in demand estimation,
as in Berry et al (2004).

23Some students in our data applied to only one college. Data on these students are more like typical
datasets where consumers choose one product from a menu of available products. While these students’ college
choices are still informative about average preferences, they are less helpful for identifying heterogeneity in
preferences.
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Estimation Procedure At a high level, the goal of our estimation approach is to choose

parameters that maximize the likelihood of students’ observed application sets and enrollment

decisions. Two complicating factors are that (1) our model does not admit a closed-form

solution to the portfolio problem of choosing an application set, and (2) the number of

colleges in the U.S. is quite large. As explained above, our solution to the first problem is

to base our estimator on the necessary conditions for optimality of the application set, as

described in Proposition 1.

To address the second issue, instead of including the full set of J colleges in each student’s

choice set, we draw a subset Ji of 80 colleges for each student i. The set Ji always includes

colleges in student i’s observed application set Yi, and the remaining colleges are drawn from

J \Yi in a way that accounts for both variety and relevance in terms of geography, school

type (public vs. private) and school quality. The sampling scheme, which we describe in

more detail in Appendix B, draws colleges proportionally from bins defined by public vs.

private ownership, in-state vs. out-of-state, and academic quality (as measured by SAT cj ).

The scheme guarantees inclusion of at least one academically competitive public university

from the student’s home state, since the flagship university of a student’s home state is

almost certainly in her consideration set. Importantly, the sampling rules are common across

students and independent of Yi.

Once we have constructed choice sets Ji for each student, we hold those sets fixed during the

estimation. We construct the quasi-likelihood function using a simulation procedure that (1)

simulates M copies of each student i, each with different preference “shocks” εk,i that lead to

different preference coefficients βk,i; (2) uses these simulated students to compute a kernel-

smoothed probability that the chosen application set is better than all possible one-for-one

swaps (Proposition 1); (3) computes a smoothed probability that the enrollment decision is

optimal given the admissions and financial aid outcomes; and (4) combines the probabilities

from (2) and (3) to construct the quasi-likelihood for student i’s observed choices (application

set and enrollment decision). The details of this procedure are explained in Appendix D.
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5 Results

5.1 Parameter Estimates

Table 6 reports the parameter estimates and associated standard errors.24 The estimated

tuition sensitivity declines with family income, which is in line with findings from the pre-

vious literature. The coefficient on
(
SATi − SAT cj

)2
+

is negative, suggesting that students

dislike being undermatched (own SAT being above college SAT). However, we do not find

similar distastes for being overmatched (own SAT being below college SAT); the coefficient

on
(
SATi − SAT cj

)2
−

is actually slightly positive.

The main parameters of interest are the ones related to the heterogeneity in preferences—i.e.,

the distributions of student-specific coefficients for various college attributes (academic qual-

ity, distance, public vs. private and college athletics). To better understand these estimates,

we report in Table 7 the change in a student’s utility, measured in thousands of tuition dol-

lars, associated with a given change of an attribute. The middle column reports the impact

for a student with the mean βk,i. The first and third columns report the same effects for

students with βk,i’s one standard deviation below or above that mean, respectively. Since we

estimate different tuition coefficients for different family income levels, we report the effects

separately for each income group. Students from high-income households are estimated to

have a lower coefficient on tuition (γ̂2 = 0.228), so the heterogeneity in their preferences for

non-tuition college characteristics is amplified when expressed in terms of tuition dollars.

Several points stand out from Table 7. First, there is considerable heterogeneity in how much

students value academic quality. A middle-income student at the higher end of the quality

preference (β1,i) distribution would be willing to pay $7,800 more in tuition to attend a college

with a quality index of 1.5 vs. 1 (rough examples would be University of Michigan-Ann Arbor

vs. UT Austin, or College of William and Mary vs. Bard College), whereas a student at the

lower end of the β1,i distribution would be willing to pay only $2,730. Second, most students

have strong preferences for attending colleges close to home. For example, for a middle-

income student with an average distance preference—i.e., with the mean value of β2,i—an

increase in distance from 10 to 100 miles is equivalent to a nearly $6,000 increase in tuition.

24We estimate the information matrix as the sum of the outer products of the scores: Î =
∑
i gig

′
i, where

gi is the score function for student i. We estimate the Hessian matrix as Ĥ =
∑
i hi, with hi being the

Hessian for student i. The standard errors are then computed as the square roots of the diagonal elements of
Ĥ−1ÎĤ−1.
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Table 6: Utility Parameter Estimates

Variable Parameter Estimate Std. Error

Tuition×Low Income γ1 1.283 0.097
Tuition×High Income γ2 0.228 0.033
Constant α0 33.461 0.393(
SATi − SAT cj

)2
+

α1 -1.028 0.059(
SATi − SAT cj

)2
−

α2 0.152 0.039

Black α3 -0.077 1.166
Hispanic α4 -2.645 1.009
(qj − q85th)+ δ1 2.650 0.461
Quality index: qj µ1,0 0.927 0.088
qj×Low Income µ1,1 -0.085 0.087
qj×High Income µ1,2 -0.454 0.086
Out of state δ2 1.891 0.148
Distance µ2,0 -1.435 0.113
Distance×Low Income µ2,1 -0.897 0.118
Distance×High Income µ2,2 0.841 0.077
Distance×State Average Travel Distance µ2,3 -0.011 0.001
Private µ3,0 -2.366 0.275
Private×Low Income µ3,1 -0.274 0.528
Private×High Income µ3,2 0.002 0.356
NCAA Division 1 µ4,0 0.675 0.225
Std dev. of quality (qj) preference σ1 0.525 0.060
Std dev. of distance preference σ2 1.188 0.058
Std dev. of Private preference σ3 5.193 0.588
Std dev. of NCAA Div. 1 preference σ4 4.532 0.632
Std dev. of shocks to the outside option λ0 2.677 0.030
Std dev. of shocks to the outside option (low income) λ1 0.290 0.054
Std dev. of shocks to the outside option (high income) λ2 0.314 0.038

However, 0.2 percent of low-income students and 6.9 percent of high-income students have

a positive preference for distance. Similarly, while most students exhibit strong home-state

biases (for reasons beyond tuition and distance), a small fraction of students prefer to study

out of their home states. Third, all else being equal, an average student values public colleges

over private colleges, but over 30% of students prefer private colleges. Finally, our estimates

suggest that 56 percent of students favor a college with an NCAA Division I football team

over an otherwise equivalent college without such a team, while the rest have the opposite

preference.
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Table 7: Preference Heterogeneity

Preference at:

µ̂− σ̂ µ̂ µ̂+ σ̂

Increase qj from -0.5 to 0 (27th to 59th percentile)
Low income 0.54 0.90 1.53
Middle income 0.75 1.26 2.14
High income 2.08 3.52 5.95

Increase qj from 1 to 1.5 (90th to 95th percentile)
Low income 1.95 3.30 5.58
Middle income 2.73 4.61 7.80
High income 7.60 12.85 21.71

Increase distance from 16km to 160km (10 to 100 miles)
Low income -8.42 -6.29 -4.15
Middle income -8.74 -6.00 -3.26
High income -29.76 -17.76 -5.76

Out of state vs. in state
Low income -6.91 -5.16 -3.41
Middle income -7.17 -4.93 -2.68
High income -24.44 -14.59 -4.73

Private vs. public
Low income -6.11 -2.06 1.99
Middle income -7.56 -2.37 2.83
High income -33.14 -10.37 12.41

NCAA Division I sports
Low income -3.01 0.53 4.06
Middle income -3.86 0.68 5.21
High income -16.92 2.96 22.84

To calculate the numbers related to distance reported in the third and fourth panels, we set
the value for the state average travel distance at the median across all states.

5.2 Model Fit

As discussed in Section 3.2.1, all of our simulations take as given the observed number of

colleges |Yi| a student applied to. To evaluate how well our model fits the data, we simulate

each student i’s optimal application set given size |Yi| by solving the inner layer of problem

(5) and then deriving her optimal enrollment decision given the admissions and financial aid

outcomes for the applied-to colleges. Panel A of Table 8 shows the average characteristics of
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the colleges students actually applied to and enrolled in as well as the average characteristics

of the colleges our model predicts they would apply to and enroll in. Some of these college

characteristics are common across students—such as college quality, median SAT, private, and

NCAA—while others are college-student specific, such as admissions and aid probabilities, aid

amount, tuition (because tuition for public colleges depends on in-state status and reciprocity

agreements with other states), differences between the student’s SAT and the college’s median

SAT, whether the college is out of state, and home-college distance. For enrollment, each

row is a simple average across college enrollees. For application, since some students applied

to more than one college, we first take the average of (college-student-specific) characteristics

across the colleges a student applied to, and then average across students.25 Panel B reports

model fits for the fraction of students admitted to any college, and the fraction of college

enrollees among those with at least one offer. Overall, the model fits the data well. However,

it underpredicts the tuition and home-to-college distance (physical distance and out-of-state

status) for both applied colleges and enrolled colleges. Table 12 and Table 13 in the appendix

show model fits by family income and by student SAT, respectively.

6 Counterfactual Simulations

Using our estimated model, we explore two questions about higher education. First, we

examine the implications of the uneven spatial distribution of colleges in the U.S. for students’

choices and welfare. Then, we examine the substitution patterns that would result if public

universities’ in-state subsidies were eliminated.

6.1 Geographic Differences in Student Welfare

Given our estimated student preferences, the uneven spatial distribution of colleges in the U.S.

may lead to different outcomes and welfare levels for otherwise identical students depending

on where they live. To quantify these differences, we use our estimates to simulate the

outcome and welfare for the same student were she to live in different counties across the

U.S. Since locations may matter more depending on students’ backgrounds, we conduct the

25For example, to obtain the entry in Row 1 of the Application column, we first calculate the college-
student-specific admissions probability pij for student i at each of the colleges she applied to, and take the
average across j ∈ Yi, yielding an average pi ≡ 1

|Yi|
∑
j∈Yi

pij for the student; then we take the average across

students, i.e., 1
I

∑I
i=1 pi.
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Table 8: Model Fit

Panel A: College characteristics

Data Model

Application Enrollment Application Enrollment

Admission probability 0.74 0.80 0.76 0.78
Tuition ($1,000) 11.34 11.51 10.71 10.03
Aid probability 0.49 0.50 0.52 0.52
Aid amount ($1,000) 7.76 7.69 8.20 7.78

(SATi − SATj)2+ 0.70 0.81 0.64 0.65

(SATi − SATj)2− 2.74 1.36 2.53 1.98

Median SAT (100) 11.03 11.08 10.99 11.06
Quality index qj 0.24 0.26 0.28 0.32
Private 0.32 0.33 0.39 0.34
Distance (100 km) 3.47 3.38 3.07 2.77
Out of state 0.27 0.26 0.17 0.14
NCAA Division I sports 0.34 0.35 0.32 0.36

Panel B: Admission and enrollment rates

Data Model

Admission rate 0.90 0.92
Enrollment rate 0.84 0.89

The admission rate is the fraction of students who were admitted to at least one of the

colleges they applied to, and the enrollment rate is conditional on being admitted to at least

one college.

cross-county comparison separately for 9 hypothetical students, each representing a group

defined by SAT (low, middle, high) and family income (low, middle, high). The representative

student in each group is assigned the average characteristics of the students in that group.26

For each of the 9 representative students, we place her into each U.S. county and simulate

her application and enrollment outcomes in each county. We use the same draws of random

preference coefficients and shocks (to financial aid and the outside option) in all counties, so

that all differences across simulations for the same representative student are attributable to

the county of residence.

Figure 1 summarizes the geographic variation in students’ ex ante welfare upon college appli-

cation with heat maps for each combination of family income (low, middle, high shown from

the top to the bottom) and student SAT tercile (low, middle, high shown from the left to the

right).27 The differences shown in the figure reflect a variety of factors. Obviously the main

26To construct the group averages, we use means for continuous variables and medians for categorical
variables.

27Student welfare is measured by the ex ante value maxY⊆J s.t. |Y |=n {V (Y,Xi, βi)} , where n is the number
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driver is that most students have relatively strong preferences to attend a nearby college.28

This preference for proximity, combined with the substantial heterogeneity in students’ pref-

erences for other college characteristics, makes it quite valuable to live in a place with a wide

variety of nearby colleges. This is especially true for high-SAT students, since their higher

chances of admission mean that more of the nearby colleges will be realistic options for them.

Indeed, the largest geographic differences shown in Figure 1 are for students with high SAT

scores. The values of high-SAT students’ choice sets differ sharply across regions, with higher

values in the eastern half of the country. A high-performing student is meaningfully better

off if she lives in Virginia instead of Nevada, for instance. By contrast, geographic hetero-

geneity for students with low SAT scores is far less pronounced. With the exception of some

remote areas in states like Wyoming and South Dakota, low-SAT students’ ex ante expected

values are roughly the same regardless of where they live. This suggests that the supply of

non-selective colleges in the U.S. has a spatial distribution that mostly matches demand.

Besides the welfare differences shown in Figure 1, the uneven spatial distribution of colleges

can also lead to substantial differences in the same student’s likelihood of enrollment, and

the characteristics of the enrolled colleges, depending on her county of residence. The mag-

nitudes of these differences are summarized in Table 9, which shows the interquartile range

of welfare and interquartile ranges of five predicted outcomes across counties. For instance,

the enrollment probability of a low-income student with a middle SAT score varies by 5.88

percentage points between the 25th and 75th percentile counties, and the median SAT score

of the enrolled college varies by 53 points. Comparing across rows in the table, we find

that the higher a student’s family income, the less her home location matters for her enroll-

ment probability and the quality of her enrolled college, and the more her location matters

for home-college distance and net tuition. This suggests that students from richer families

are more able to offset their location disadvantages (in terms of college access) by traveling

further and/or paying higher net tuition.

There are also meaningful correlations between the same student’s welfare and her enrollment

outcomes across counties, as shown in Table 10. Each row in the table refers to one of the

9 representative students; the five columns show how each representative student’s expected

utility is correlated with her college enrollment probability and the characteristics of the

of colleges applied to by a representative student in each of the 9 groups. Values are divided by the tuition
coefficient corresponding to the student’s income group, so they are expressed in tuition dollars.

28In the discussion here we interpret our estimates as literal preferences for proximity. As we noted above,
however, the estimates may also reflect unmodeled differences in application costs, or gaps in the amount of
information students have about near vs. distant colleges.
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Figure 1: Expected Utility of College Education across U.S. Counties

15,810 − 22,187
15,088 − 15,810
14,579 − 15,088
14,079 − 14,579
13,465 − 14,079
10,217 − 13,465

(a) Low income, low SAT

17,594 − 23,995
16,785 − 17,594
16,184 − 16,785
15,627 − 16,184
14,990 − 15,627
12,315 − 14,990

(b) Low income, middle SAT

20,598 − 25,869
19,670 − 20,598
18,926 − 19,670
18,287 − 18,926
17,460 − 18,287
13,060 − 17,460

(c) Low income, high SAT

20,782 − 27,958
19,977 − 20,782
19,417 − 19,977
18,876 − 19,417
18,256 − 18,876
14,475 − 18,256

(d) Middle income, low SAT

22,669 − 30,201
21,846 − 22,669
21,160 − 21,846
20,536 − 21,160
19,785 − 20,536
16,655 − 19,785

(e) Middle income, middle SAT

25,134 − 30,611
24,195 − 25,134
23,437 − 24,195
22,698 − 23,437
21,837 − 22,698
17,290 − 21,837

(f) Middle income, high SAT

116,410 − 137,830
113,680 − 116,410
111,800 − 113,680
109,880 − 111,800
107,940 − 109,880
97,725 − 107,940

(g) High income, low SAT

120,990 − 141,590
118,340 − 120,990
116,240 − 118,340
114,300 − 116,240
111,910 − 114,300
102,800 − 111,910

(h) High income, middle SAT

124,110 − 144,260
121,200 − 124,110
118,790 − 121,200
116,390 − 118,790
113,010 − 116,390
97,114 − 113,010

(i) High income, high SAT

Expected utility is measured in tuition dollars. From top to bottom, the family income for
the three rows are ≤ 35, 000, (35, 000, 100, 000], and > 100, 000, respectively. From left to
right, the student SAT for the three columns are ≤ 950, (950, 1130), and ≥ 1, 130,
respectively. Each map has 6 colors, each representing 1/6 of the counties.

enrolled college (qj , SAT, distance and net tuition) when she resides in different counties in

the U.S. Not surprisingly, expected utility is highly correlated with enrollment probability.

Among the three characteristics of the enrolled college, the expected utility is most strongly

correlated with distance, but there is some heterogeneity across student groups. For example,

regardless of income, a high-SAT student’s expected utility is strongly correlated with both

the quality index qj and the median SAT of her enrolled college, while this correlation is

much weaker for low- and middle-SAT students.

A natural question to ask is whether the geographic differences mostly reflect state-level

variation, or whether variation across counties within a state is also important. To answer

this question, we regress a student’s county-specific welfare on state fixed effects; the R2

26



Table 9: Interquartile Ranges of Simulated Outcomes

Expected Enrollment Enrolled college
Student group utility ($) Prob (%) qj SAT Dist Net Tui

Low income, Low SAT 1,593 6.11 0.32 52 199 1,545
Low income, Middle SAT 1,775 5.88 0.35 53 155 1,540
Low income, High SAT 2,212 5.35 0.37 58 174 2,118
Middle income, Low SAT 1,708 4.77 0.31 46 240 1,337
Middle income, Middle SAT 1,987 4.43 0.34 47 196 1,443
Middle income, High SAT 2,293 4.15 0.32 49 214 2,193
High income, Low SAT 5,930 2.56 0.28 36 291 1,975
High income, Middle SAT 6,340 1.68 0.24 37 246 1,952
High income, High SAT 7,604 1.95 0.26 36 302 2,922

Expected utility values are divided by the relevant tuition coefficient in order to express
utility in terms of tuition dollars. Dist is distance in kilometers, and NT is net tuition in
dollars.

Table 10: Correlations with the Expected Utility

Enrollment Enrolled college
Student group Probability qj SAT Dist NT R2

Low income, Low SAT 0.92 -0.14 -0.26 -0.65 -0.36 0.29
Low income, Middle SAT 0.87 0.03 -0.08 -0.68 -0.12 0.21
Low income, High SAT 0.86 0.27 0.27 -0.67 -0.04 0.31
Middle income, Low SAT 0.91 0.02 -0.18 -0.52 -0.28 0.33
Middle income, Middle SAT 0.88 0.14 -0.02 -0.57 -0.14 0.25
Middle income, High SAT 0.87 0.33 0.29 -0.64 0.03 0.36
High income, Low SAT 0.88 0.18 -0.13 -0.36 -0.01 0.38
High income, Middle SAT 0.92 0.22 -0.01 -0.45 0.14 0.35
High income, High SAT 0.90 0.43 0.41 -0.62 0.09 0.60

Cells in columns 2-6 report correlations of the indicated outcome with ex ante expected utility
across counties. Dist is distance in kilometers, and NT is net tuition in dollars. The last
column reports the R2 from a regression of county expected utilities on state fixed effects.

from this regression is shown in the last column of Table 10. State fixed effects generally

explain between 20 to 60 percent of the cross-county variation, implying that both between-

and within-state variation in college access are important, but to different extents depending

on family income and SAT. In particular, as a student’s family income and SAT increase,

especially the former, the student’s state of residence becomes more and more relevant for

her utility. For example, for a student with high family income and high SAT, 60% of the

geographic dispersion of expected utility reflects cross-state variation.
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6.2 Student Responses to In-state Tuition Subsidies

Most public universities are heavily subsidized, charging much lower tuition for in-state res-

idents. Peltzman (1973) argues that such subsidies might actually cause students to choose

in-state universities instead of unsubsidized but higher quality institutions for which they

would qualify, thus reducing their educational attainment. At a deeper level, this is an argu-

ment against the tuition subsidy policy that applies to all in-state students; and an evaluation

of counterfactual policies would require an equilibrium model that takes into account the sup-

ply side responses. However, before conducting such a full-blown investigation, a pre-requisite

is to understand how an individual student would respond.

To this end, for each student, we simulate her choice when facing the actual/baseline tuition

schedules, and separately simulate her choice if she were to face counterfactual tuition sched-

ules in which she has to pay out-of-state tuition at her home-state institutions. To ensure

that the comparison of these two simulations isolates the effect of tuition changes, for each

student the two simulations use the same consideration set, the same draws of random pref-

erence coefficients, and the same draws of the random shocks to financial aid and the outside

option.29 Table 11 reports the differences in average outcomes between the two simulations

(counterfactual minus baseline).

Table 11: Simulated Changes when In-state Subsidies are Removed

Characteristics of enrolled college
Student group Quality qj SAT % out of state Distance (km) % Private

Low income, Low SAT -0.04 -7.17 6.28 78.74 25.52
Low income, Middle SAT -0.05 -11.20 5.15 75.69 32.91
Low income, High SAT -0.05 -10.18 6.02 90.38 34.91
Middle income, Low SAT -0.03 -8.79 10.08 129.29 25.55
Middle income, Middle SAT -0.04 -11.05 8.92 117.73 29.99
Middle income, High SAT -0.02 -5.99 9.53 130.08 30.54
High income, Low SAT 0.01 -0.91 3.50 49.74 6.85
High income, Middle SAT 0.01 0.04 4.12 62.98 8.19
High income, High SAT 0.04 4.35 4.16 66.32 8.07

All students -0.01 -5.10 7.55 103.03 23.58

Naturally, we find that eliminating subsidies leads students to substitute away from their

home states’ universities. Overall, students are 7.55 percentage points more likely to attend

a college outside of their home states, and the average distance to the enrolled college in-

29Tuition is an input into our model of college-specific financial aid, therefore, financial aid amounts are
adjusted accordingly.
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creases by 103 kilometers. Some of the substitution is consistent with Peltzman’s hypothesis,

as higher income students with high SAT scores on average enroll in colleges with higher

academic quality as measured by both the index qj and the median SAT score. Over all stu-

dents, however, the average quality of the enrolled college goes down. Some students simply

switch to lower quality in-state universities that charge lower out-of-state tuition than their

higher-quality counterparts. Others switch to lower quality private colleges where they are

more likely to get in and receive aid.30,31

These simulations are at best a crude evaluation of Peltzman’s hypothesis, but they suggest

that substitution effects resulting from the removal of in-state tuition subsidies would do

little to push students toward higher quality institutions. Perhaps a stronger argument for

increasing in-state tuition would be that the increased tuition revenue could be used to

improve the quality of public universities, which—as shown in the previous section—would

be especially valuable in states with relatively low-quality flagships.

7 Conclusion

A central purpose of this study was to develop and estimate a model that allows for rich het-

erogeneity in students’ preferences for college characteristics. From a modeling standpoint,

allowing for heterogeneity in preferences is nothing new: estimating choice models with ran-

dom coefficients has long been a standard approach to estimating demand systems in product

markets. From a data standpoint, our key innovation is to use data on students’ application

sets as a way of credibly identifying preference heterogeneity. The modeling challenge is to

incorporate these data in estimation without having to fully solve the computationally in-

tractable portfolio problem of students choosing which colleges to apply to. We achieve this

by exploiting necessary conditions for optimality that respect the subtleties introduced by

admissions uncertainties (e.g. the “safety schools” problem).

30If students in the baseline are not allowed to re-optimize in response to the elimination of the in-state
tuition subsidy, the average net tuition of the enrolled college across all students would increase from $2,134
to $7,374, compared to $5,170 in the counterfactual where re-optimization is allowed (not shown in the table).
The smaller increase in the counterfactual reflects the switch to colleges with lower out-of-state tuition and
more generous financial aid.

31The predicted enrollment rate (not shown in the table) also drops by 3.7 percentage points, but our
simulation may underpredict the drop in enrollment because we hold the number of applications fixed at the
baseline. An increase in tuition levels reduces the net benefit of applying to colleges; this may lead some
students to apply to fewer colleges and discourage some others from applying to colleges at all. This would
imply further reductions in education quality that could more than offset any gains from resolving Peltzman’s
mismatch problem.
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Our estimates confirm considerable heterogeneity in students’ preferences for college at-

tributes. Most students prefer to attend colleges close to home, and for many students

this preference is quite strong. Preferences for other college characteristics are more vari-

able: for instance, some students appear to care a lot about academic quality, others very

little. Given the uneven spatial distribution of colleges in the United States, the combination

of strong preferences for proximity and variable preferences for other characteristics implies

substantial differences in the expected values of students’ choice sets depending on where

they live. These differences are especially large for high-performing students.

The fact that most students have strong preferences for proximity also means that even large

changes in tuition may not meaningfully change their choices. Peltzman (1973) hypothesized

that tuition subsidies for in-state students might inefficiently distort their choices away from

higher-quality colleges outside their home states, but our simulations indicate that if students

were forced to pay out-of-state tuition at their home state public colleges, most would simply

switch to cheaper colleges that are still close to home. Only high-performing students with

higher incomes appear to substitute toward higher-quality colleges that are further away.

Many policies and programs already aim to equalize opportunity in higher education, such as

private scholarship funds and government financial aid programs that specifically help low-

income students. Our results suggest these policies could also consider equalizing geographic

differences in opportunity, for instance by subsidizing students in locations where colleges

are sparse, or by making investments to raise the quality of academic institutions in targeted

locations.
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Appendices

A Proof of Proposition 1

For convenience, we will drop the Xi and βi arguments from the v function, denoting the ex
ante value of being admitted to the set of colleges Oi as v(Oi). We do the same for the V
function, denoting the value of an application set Yi for student i as V (Yi). Finally, we drop
the Xi argument and denote the probability that student i is admitted to the set of colleges
Oi as P (Oi).

Under Assumption 1, the value of application set Yi is given by

V (Yi) =
∑
Oi⊆Yi

P (Oi) v (Oi) +

1−
∑
Oi⊆Yi

P (Oi)

E (ui0) (9)

=
∑
Oi⊆Yi

P (Oi) v (Oi) .

Pick any school in Yi, say, y∗. O′i ⊆ Yi\y∗ are sets that do not include y∗. (9) can be written
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as

V (Yi) = piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})+ (1− piy∗)
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
(
O′i
)

Consider the set Yi and Y ′i where y∗ is replaced by k.

V
(
Y ′i
)

= pik
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, k

})
+ (1− pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)

V (Yi)− V
(
Y ′i
)

= piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})− pik ∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
({
O′i, k

})
− (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)
.

V (Yi)− V (Y ′i ) ≥ 0 implies

piy∗
∑

{O′i}⊆Yi\y∗
P
(
O′i
)
v
({
O′i, y

∗})− pik ∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
({
O′i, k

})
≥ (piy∗ − pik)

∑
{O′i}⊆Yi\y∗

P
(
O′i
)
v
(
O′i
)

B Choice sets

For each student, the choice set always includes (1) colleges in the actual application set
and (2) public colleges with the highest median SAT in each state that has a reciprocity
agreement with the student’s state of residency, or the public college with the highest median
SAT in the nearest neighboring state if the student’s state of residency has no reciprocity
agreement with any other state. The rest of the choice set are drawn randomly from the
remaining colleges.

Specifically, for each student, all colleges are divided into ten groups that are exhaustive
and mutually exclusive: (i) top public in state, (ii) other public in state, (iii) top private
in state, (iv) other private in state, (v) top public out of state, (vi) middle public out of
state, (vii) other public out of state, (viii) top private out of state, (ix) middle private out
of state, and (x) other private out of state. An in-state public (private) college is classified
as top if it meets at least one of three criteria: (1) median SAT ranks among the top 10%
of all public (private) colleges in the country, (2) median SAT ranks first among all public
(private) colleges in state, (3) enrollment ranks first among all public (private) colleges in
state. An in-state public (private) college is classified as other if it does not meet any of the
three criteria. An out-of-state public (private) college is classified to be: (1) top if its median
SAT ranks among the top 10% of all public (private) colleges in the country, (2) middle if its
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median SAT ranks among the top 10-30% of all public (private) colleges in the country, and
(3) other if its median SAT ranks among the bottom 70% of all public (private) colleges in
the country.

The number of colleges drawn from each of the ten groups is proportional to the weighted
group size, subject to the following modifications:

1. Colleges in groups (vii) and (x) receive a weight of 0.5. All other colleges receive a
weight of 1.

2. There must be at least one college drawn from each of the four in-state groups (i)-(iv),
unless the group is empty. The numbers for other groups are adjusted so that they are
still proportional to the weighted group size.

3. If the number of colleges for a group is not large enough to include the colleges in
the actual application set and the best public colleges in reciprocity (or the nearest
neighboring) states, it is increased to the number of the two types of colleges in the
group. The numbers for other groups are adjusted so that they are still proportional
to the weighted group size.

4. If necessary, a random number is used to make sure the resulting numbers are all
integers. As an example, suppose steps 1-3 imply that the numbers of colleges drawn
from the first two groups are 1.6 and 3.4, respectively, while the numbers for the other
groups are all integers. We would draw a number from the uniform distribution [0,1].
If the number drawn is less than 0.6, we set the numbers for the first two groups to 2
and 3, respectively. Otherwise, they are set to 1 and 4, respectively.

The colleges in the actual application set and the best public colleges in reciprocity (or the
nearest neighboring) states are drawn first. If the number of these two types of colleges in
a group is smaller than the number to be drawn, the rest are drawn randomly from the
remaining colleges in the group.

While this procedure almost always ensures that the flagship university in a student’s home
state is included in her choice set, theoretically it may not be included if (1) the size of group
(i) is larger than one and (2) the flagship is not in the student’s application set.

C College Quality Index

Our quality measure qj combines three characteristics of each college j, the median SAT (of
entering students), the average salary of all faculty engaged in instruction, and the under-
graduate faculty-student ratio. This measure is constructed in three steps, following Dillon
and Smith (2017). First, we normalize each of the three characteristics to have a zero mean
and unit standard deviation across colleges. Second, we estimate the first principal compo-
nent of the three normalized characteristics. Third, we use the factor loadings to construct
a weighted average of the normalized characteristics. This weighted average is our quality
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index qj . Across colleges, qj ranges from -2.01 to 4.16, with a mean (standard deviation) of
0 (0.79).

D Estimation algorithm

We use the following algorithm to construct the quasi-likelihood for student i’s observed
choices (application set and enrollment decision):

1. Simulate M copies of student i with the same characteristics Xi but different prefer-
ence “shocks” εk,i, so that each simulated student m ∈ {1, ..,M} is characterized by(
Xi, ε

m
k,i

)
, which are fixed throughout. Also draw a set of S post-application shocks

{ηij , εi0}, which are fixed throughout.

2. For each simulated student, compare each college j in the observed application set Yi
with every college k in Ji\Yi, checking the necessary condition from Proposition 1. For
Yi to be optimal among the set of alternatives involving one-for-one swaps, it must be

that V (Yi, Xi, β
m
i ) ≥ V (Y

k\j
i , Xi, β

m
i ) for all possible swaps (j, k), where Y

k\j
i denotes

i’s application set with college k replacing college j. The probability is calculated using
a kernel smoothed frequency simulator (McFadden (1989)), which converges to the
frequency simulator as the smoothing parameter ι goes to zero, so that the likelihood
of the application decision for copy m of student i is

Lappi,m =
exp

(
V (Yi,Xi,β

m
i )

ι

)
exp

(
V (Yi,Xi,βmi )

ι

)
+
∑
j∈Yi

∑
k∈Ji\Yi

exp

(
V (Y

k\j
i ,Xi,βmi )

ι

) .
3. For each college o in Oi∪{0} (the set Oi of colleges that admitted student i augmented

to include the outside option of not enrolling in any college j = 0), compute the ex post
utility Uimso for the random coefficient draw m and post-application shocks s. Letting
o∗ be the observed choice and reimso ≡ Uimso∗ − Uimso, we compute the smoothed
likelihood of the enrollment decision for copy m of student i as

Lenri,m =
1

S

∑
s

1∑
o∈Oi∪{0}

e−
re
imso
ι

(10)

4. The smoothed log-likelihood function of the sample is then calculated as

L =
1

N

∑
i

ln

(
1

M

∑
m

Lappi,mL
enr
i,m

)
. (11)

The model parameters are then chosen to minimize this log-likelihood function using a
standard numerical optimization algorithm.
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E Additional Tables for Model Fit

Table 12 reports model fit statistics for three groups of family income, and Table 13 reports
the same statistics for three groups of student SAT.

Table 12: Model Fit by Family Income

Data Model

Family income ($1,000) ≤ 35 (35, 100] > 100 ≤ 35 (35, 100] > 100

Panel A: College characteristics - application
Admission probability 0.68 0.76 0.77 0.71 0.79 0.75
Tuition ($1,000) 9.28 11.03 14.17 8.70 10.33 13.67
Aid probability 0.61 0.50 0.36 0.63 0.54 0.38
Aid amount ($1,000) 9.04 7.79 6.39 9.41 8.32 6.67

(SATi − SATj)2+ 0.37 0.73 0.94 0.37 0.69 0.81

(SATi − SATj)2− 4.88 2.40 1.41 4.31 2.15 1.69

Median SAT (100) 10.66 10.99 11.52 10.55 10.93 11.59
Quality index qj 0.05 0.20 0.53 0.02 0.23 0.69
Private 0.26 0.31 0.40 0.32 0.39 0.46
Distance (100 km) 2.70 3.26 4.79 1.81 2.74 5.16
Out of state 0.18 0.25 0.41 0.07 0.15 0.32
NCAA Division I sports 0.30 0.34 0.39 0.27 0.31 0.38

Panel B: College characteristics - enrollment
Admission probability 0.76 0.82 0.79 0.75 0.80 0.76
Tuition ($1,000) 9.68 10.91 14.12 8.29 9.44 12.66
Aid probability 0.64 0.52 0.37 0.64 0.54 0.37
Aid amount ($1,000) 9.32 7.74 6.39 9.28 7.88 6.38

(SATi − SATj)2+ 0.47 0.88 0.88 0.41 0.71 0.71

(SATi − SATj)2− 2.36 1.23 0.92 3.39 1.74 1.44

Median SAT (100) 10.67 10.98 11.58 10.61 10.95 11.62
Quality index qj 0.06 0.20 0.56 0.06 0.25 0.70
Private 0.30 0.32 0.40 0.29 0.34 0.40
Distance (100 km) 2.51 3.12 4.57 1.58 2.40 4.51
Out of state 0.16 0.23 0.40 0.06 0.12 0.26
NCAA Division I sports 0.27 0.34 0.42 0.30 0.35 0.44

Panel C: Admission and enrollment rate as a share of students
Admission rate 0.81 0.91 0.96 0.86 0.92 0.96
Enrollment rate 0.76 0.84 0.91 0.81 0.89 0.95

The admission rate is the fraction of students who were admitted to at least one of the

colleges they applied to, and the enrollment rate is conditional on being admitted to at

least one college.
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Table 13: Model Fit by Student SAT

Data Model

Student SAT ≤ 950 (950, 1130) ≥ 1130 ≤ 950 (950, 1130) ≥ 1130

Panel A: College characteristics - application
Admission probability 0.63 0.80 0.81 0.68 0.81 0.81
Tuition ($1,000) 8.90 10.46 14.85 8.29 10.18 13.86
Aid probability 0.46 0.48 0.54 0.49 0.52 0.56
Aid amount ($1,000) 7.21 7.19 8.89 7.39 7.92 9.35

(SATi − SATj)2+ 0.01 0.20 1.93 0.02 0.21 1.74

(SATi − SATj)2− 6.49 1.07 0.24 5.64 1.29 0.34

Median SAT (100) 10.41 10.93 11.81 10.25 10.92 11.86
Quality index qj -0.11 0.15 0.72 -0.14 0.22 0.81
Private 0.25 0.29 0.43 0.33 0.38 0.47
Distance (100 km) 2.52 3.19 4.79 2.40 2.77 4.09
Out of state 0.19 0.24 0.38 0.12 0.15 0.24
NCAA Division I sports 0.27 0.34 0.41 0.24 0.32 0.41

Panel B: College characteristics - enrollment
Admission probability 0.72 0.83 0.82 0.70 0.82 0.82
Tuition ($1,000) 8.54 10.33 14.43 7.90 9.25 12.54
Aid probability 0.47 0.48 0.54 0.48 0.51 0.55
Aid amount ($1,000) 6.70 7.10 8.82 7.08 7.38 8.73

(SATi − SATj)2+ 0.01 0.21 1.82 0.02 0.20 1.60

(SATi − SATj)2− 3.86 0.88 0.17 5.01 1.11 0.24

Median SAT (100) 10.20 10.87 11.82 10.28 10.90 11.86
Quality index qj -0.23 0.11 0.71 -0.11 0.21 0.80
Private 0.26 0.29 0.42 0.30 0.33 0.40
Distance (100 km) 2.31 3.06 4.35 2.34 2.49 3.41
Out of state 0.18 0.23 0.34 0.12 0.12 0.19
NCAA Division I sports 0.22 0.33 0.44 0.25 0.35 0.47

Panel C: Admission and enrollment rate as a share of students
Admission rate 0.77 0.95 0.99 0.84 0.95 0.97
Enrollment rate 0.70 0.87 0.94 0.82 0.91 0.92

The admission rate is the fraction of students who were admitted to at least one of the

colleges they applied to, and the enrollment rate is conditional on being admitted to at least

one college.

F Simulations

For baseline simulations, we proceed as follows:

1. For each individual, we keep the consideration set (with size J) and the draws of random
coefficients and shocks (to financial aid and the outside option) used in estimation.

2. For each individual, we draw J random numbers to determine the admission outcome
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of each college in the consideration set.

3. For each draw of the random coefficients, we calculate the expected value of each
possible combination of n colleges, where n is the number of applications in data. The
combination with the largest expected value will be the application set.

4. Given the application set and the random numbers that determine the admission out-
come of each college, we have the admission set. We can then calculate the enrollment
outcome for each draw of the shocks to financial aid and outside options.
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